Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca M. Notarangelo is active.

Publication


Featured researches published by Francesca M. Notarangelo.


Cell | 2011

Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration.

Daniel Zwilling; Shao-Yi Huang; Korrapati V. Sathyasaikumar; Francesca M. Notarangelo; Paolo Guidetti; Hui-Qiu Wu; Jason Lee; Jennifer Truong; Yaisa Andrews-Zwilling; Eric W. Hsieh; Jamie Y. Louie; Tiffany Wu; Kimberly Scearce-Levie; Christina Patrick; Anthony Adame; Flaviano Giorgini; Saliha Moussaoui; Grit Laue; Arash Rassoulpour; Gunnar Flik; Yadong Huang; Joseph M. Muchowski; Eliezer Masliah; Robert Schwarcz; Paul J. Muchowski

Metabolites in the kynurenine pathway, generated by tryptophan degradation, are thought to play an important role in neurodegenerative disorders, including Alzheimers and Huntingtons diseases. In these disorders, glutamate receptor-mediated excitotoxicity and free radical formation have been correlated with decreased levels of the neuroprotective metabolite kynurenic acid. Here, we describe the synthesis and characterization of JM6, a small-molecule prodrug inhibitor of kynurenine 3-monooxygenase (KMO). Chronic oral administration of JM6 inhibits KMO in the blood, increasing kynurenic acid levels and reducing extracellular glutamate in the brain. In a transgenic mouse model of Alzheimers disease, JM6 prevents spatial memory deficits, anxiety-related behavior, and synaptic loss. JM6 also extends life span, prevents synaptic loss, and decreases microglial activation in a mouse model of Huntingtons disease. These findings support a critical link between tryptophan metabolism in the blood and neurodegeneration, and they provide a foundation for treatment of neurodegenerative diseases.


Journal of Biological Chemistry | 2013

Targeted Deletion of Kynurenine 3-Monooxygenase in Mice A NEW TOOL FOR STUDYING KYNURENINE PATHWAY METABOLISM IN PERIPHERY AND BRAIN

Flaviano Giorgini; Shao-Yi Huang; Korrapati V. Sathyasaikumar; Francesca M. Notarangelo; Marian A. R. Thomas; Margarita Tararina; Hui-Qiu Wu; Robert Schwarcz; Paul J. Muchowski

Background: Kynurenine 3-monooxygenase (KMO) is hypothesized to play a pivotal role in regulating tryptophan metabolism in health and disease. Results: Mice that were generated lacking KMO have alterations in the levels of several tryptophan metabolites. Conclusion: KMO is a critical regulator of tryptophan metabolism. Significance: KMO knock-out mice will be a useful research tool to dissect the biological and pathophysiological roles of tryptophan metabolism. Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo−/− mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo−/− mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo−/− mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD+, did not differ between Kmo−/− and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo−/− mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo−/− mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease.


Schizophrenia Research | 2014

Evaluation of kynurenine pathway metabolism in Toxoplasma gondii-infected mice: Implications for schizophrenia

Francesca M. Notarangelo; Emma H. Wilson; Kyle J. Horning; M.A.R. Thomas; Tajie H. Harris; Q. Fang; Christopher A. Hunter; Robert Schwarcz

Toxoplasma gondii, an intracellular protozoan parasite, is a major cause of opportunistic infectious disease affecting the brain and has been linked to an increased incidence of schizophrenia. In murine hosts, infection with T. gondii stimulates tryptophan degradation along the kynurenine pathway (KP), which contains several neuroactive metabolites, including 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN) and kynurenic acid (KYNA). As these endogenous compounds may provide a mechanistic connection between T. gondii and the pathophysiology of schizophrenia, we measured KP metabolites in both the brain and periphery of T. gondii-treated C57BL/6 mice 8 and 28 days post-infection. Infected mice showed early decreases in the levels of tryptophan in the brain and serum, but not in the liver. These reductions were associated with elevated levels of kynurenine, KYNA, 3-HK and QUIN in the brain. In quantitative terms, the most significant increases in these KP metabolites were observed in the brain at 28 days post-infection. Notably, the anti-parasitic drugs pyrimethamine and sulfadiazine, a standard treatment of toxoplasmosis, significantly reduced 3-HK and KYNA levels in the brain of infected mice when applied between 28 and 56 days post-infection. In summary, T. gondii infection, probably by activating microglia and astrocytes, enhances the production of KP metabolites in the brain. However, during the first two months after infection, the KP changes in these mice do not reliably duplicate abnormalities seen in the brain of individuals with schizophrenia.


Analytical Biochemistry | 2012

Gas chromatography/tandem mass spectrometry detection of extracellular kynurenine and related metabolites in normal and lesioned rat brain

Francesca M. Notarangelo; Hui Qiu Wu; Anthony Macherone; David R. Graham; Robert Schwarcz

We describe here a gas chromatography-tandem mass spectrometry (GC/MS/MS) method for the sensitive and concurrent determination of extracellular tryptophan and the kynurenine pathway metabolites kynurenine, 3-hydroxykynurenine (3-HK), and quinolinic acid (QUIN) in rat brain. This metabolic cascade is increasingly linked to the pathophysiology of several neurological and psychiatric diseases. Methodological refinements, including optimization of MS conditions and the addition of deuterated standards, resulted in assay linearity to the low nanomolar range. Measured in samples obtained by striatal microdialysis in vivo, basal levels of tryptophan, kynurenine, and QUIN were 415, 89, and 8 nM, respectively, but 3-HK levels were below the limit of detection (<2 nM). Systemic injection of kynurenine (100 mg/kg, i.p.) did not affect extracellular tryptophan but produced detectable levels of extracellular 3-HK (peak after 2-3 h: ~50 nM) and raised extracellular QUIN levels (peak after 2h: ~105 nM). The effect of this treatment on QUIN, but not on 3-HK, was potentiated in the N-methyl-D-aspartate (NMDA)-lesioned striatum. Our results indicate that the novel methodology, which allowed the measurement of extracellular kynurenine and 3-HK in the brain in vivo, will facilitate studies of brain kynurenines and of the interplay between peripheral and central kynurenine pathway functions under physiological and pathological conditions.


JAMA Psychiatry | 2014

Stress-Induced Increase in Kynurenic Acid as a Potential Biomarker for Patients With Schizophrenia and Distress Intolerance

Joshua Chiappelli; Ana Pocivavsek; Katie L. Nugent; Francesca M. Notarangelo; Peter Kochunov; Laura M. Rowland; Robert Schwarcz; L. Elliot Hong

IMPORTANCE Several lines of evidence have linked the endogenous neuromodulator kynurenic acid (KYNA) to schizophrenia. The pathophysiology of schizophrenia is commonly associated with stress, and stress plays a key regulatory role in the first, rate-limiting step of the kynurenine pathway, which produces KYNA. OBJECTIVE To determine whether the level of KYNA changes following psychological stress and whether this change is associated with stress-related behavior. DESIGN, SETTING, AND PARTICIPANTS The KYNA level was measured in saliva samples taken at baseline and at 2 times following a laboratory-based psychological stress challenge in 128 participants (64 patients with schizophrenia from outpatient clinics and 64 healthy controls from the community). EXPOSURE Laboratory-based psychological stress challenge. MAIN OUTCOMES AND MEASURES Quitting the stressful task early was used as a behavioral marker of distress intolerance. RESULTS Patients with schizophrenia showed a significantly higher rate of distress intolerance compared with healthy controls (P = .003). Salivary KYNA levels increased significantly between baseline and 20 minutes following the stress task in both patients and controls (mean [SEM], 6.72nM [0.65nM] vs 8.43nM [1.05nM], respectively; P = .007). Patients who were unable to tolerate the stressful tasks and quit early showed significantly higher levels of KYNA than patients who tolerated the psychological stressor (P = .02) or healthy controls (P = .02). In patients with distress intolerance, KYNA elevation significantly correlated with the severity of clinical symptoms (ρ = 0.64; P = .008). CONCLUSIONS AND RELEVANCE Distress intolerance is more common in patients with schizophrenia. Patients with this behavioral phenotype have elevated salivary KYNA levels. This stress response behavior-linked biomarker may aid heterogeneity reduction in schizophrenia and other stress-related psychiatric conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites

Carlo Breda; Korrapati V. Sathyasaikumar; Shama Sograte Idrissi; Francesca M. Notarangelo; Jasper G. Estranero; Gareth Gl Moore; Edward W. Green; Charalambos P. Kyriacou; Robert Schwarcz; Flaviano Giorgini

Significance Neurodegenerative diseases such as Alzheimer’s (AD), Parkinson’s (PD), and Huntington’s (HD) present a significant and increasing burden on society. Perturbations in the kynurenine pathway (KP) of tryptophan degradation have been linked to the pathogenesis of these disorders, and thus manipulation of this pathway may have therapeutic relevance. Here we show that genetic inhibition of two KP enzymes—kynurenine-3-monooxygenase and tryptophan-2,3-dioxygenase (TDO)—improved neurodegeneration and other disease symptoms in fruit fly models of AD, PD, and HD, and that alterations in levels of neuroactive KP metabolites likely underlie the beneficial effects. Furthermore, we find that inhibition of TDO using a drug-like compound reverses several disease phenotypes, underscoring the therapeutic promise of targeting this pathway in neurodegenerative disease. Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway—kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP—the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington’s disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer’s and Parkinson’s disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimers model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits.


Brain Research | 2012

Kynurenic acid and 3-hydroxykynurenine production from D-kynurenine in mice.

Xiao-Dan Wang; Francesca M. Notarangelo; Ji-Zuo Wang; Robert Schwarcz

Kynurenic acid (KYNA), an antagonist of the α7 nicotinic acetylcholine receptor and the N-methyl-D-aspartate receptor, and 3-hydroxykynurenine (3-HK), a generator of reactive oxygen species, are neuroactive metabolites of the kynurenine pathway of tryptophan degradation. In the mammalian brain as elsewhere, both compounds derive from a common bioprecursor, L-kynurenine (L-KYN). Recent studies in rats demonstrated that D-kynurenine (D-KYN), a metabolite of the bacterial amino acid D-tryptophan, can also function as a bioprecursor of brain KYNA. We now investigated the conversion of systemically administered D-KYN to KYNA in mice and also explored the possible production of 3-HK in the same animals. Thirty min after an injection of D-KYN or L-KYN (30 mg/kg, i.p.), newly produced KYNA and 3-HK were recovered from plasma, liver, forebrain and cerebellum in all cases. Using a new chiral separation method, 3-HK produced from D-KYN was positively identified as D-3-HK. L-KYN was the more effective precursor of KYNA in all tissues and also exceeded D-KYN as a precursor of brain 3-HK. In contrast, D-KYN was more potent as a precursor of 3-HK in the liver. The production of both KYNA and 3-HK from D-KYN was rapid in all tissues, peaking at 15-30 min following a systemic injection of D-KYN. These results show that biosynthetic routes other than those classically ascribed to L-KYN can account for the synthesis of both KYNA and 3-HK in vivo. This new insight may be of significant physiological or pathological relevance.


Biochimica et Biophysica Acta | 2016

Tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase 1 make separate, tissue-specific contributions to basal and inflammation-induced kynurenine pathway metabolism in mice.

Paul B. Larkin; Korrapati V. Sathyasaikumar; Francesca M. Notarangelo; Hiroshi Funakoshi; Toshikazu Nakamura; Robert Schwarcz; Paul J. Muchowski

BACKGROUND In mammals, the majority of the essential amino acid tryptophan is degraded via the kynurenine pathway (KP). Several KP metabolites play distinct physiological roles, often linked to immune system functions, and may also be causally involved in human diseases including neurodegenerative disorders, schizophrenia and cancer. Pharmacological manipulation of the KP has therefore become an active area of drug development. To target the pathway effectively, it is important to understand how specific KP enzymes control levels of the bioactive metabolites in vivo. METHODS Here, we conducted a comprehensive biochemical characterization of mice with a targeted deletion of either tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO), the two initial rate-limiting enzymes of the KP. These enzymes catalyze the same reaction, but differ in biochemical characteristics and expression patterns. We measured KP metabolite levels and enzyme activities and expression in several tissues in basal and immune-stimulated conditions. RESULTS AND CONCLUSIONS Although our study revealed several unexpected downstream effects on KP metabolism in both knockout mice, the results were essentially consistent with TDO-mediated control of basal KP metabolism and a role of IDO in phenomena involving stimulation of the immune system.


Journal of Neurochemistry | 2012

Enzymatic transamination of d-kynurenine generates kynurenic acid in rat and human brain

Verónica Pérez-De La Cruz; Laura Amori; Korrapati V. Sathyasaikumar; Xiao-Dan Wang; Francesca M. Notarangelo; Hui-Qiu Wu; Robert Schwarcz

J. Neurochem. (2012) 120, 1026–1035.


Journal of NeuroVirology | 2015

Quinolinic acid/tryptophan ratios predict neurological disease in SIV-infected macaques and remain elevated in the brain under cART.

Julia L. Drewes; Kelly A. Meulendyke; Zhaohao Liao; Kenneth W. Witwer; Lucio Gama; Ceereena Ubaida-Mohien; Ming Li; Francesca M. Notarangelo; Patrick M. Tarwater; Robert Schwarcz; David R. Graham; M. Christine Zink

Activation of the kynurenine pathway (KP) of tryptophan catabolism likely contributes to HIV-associated neurological disorders. However, KP activation in brain tissue during HIV infection has been understudied, and the effect of combination antiretroviral therapy (cART) on KP induction in the brain is unknown. To examine these questions, tryptophan, kynurenine, 3-hydroxykynurenine, quinolinic acid, and serotonin levels were measured longitudinally during SIV infection in the striatum and CSF from untreated and cART-treated pigtailed macaques. Messenger RNA (mRNA) levels of KP enzymes also were measured in the striatum. In untreated macaques, elevations in KP metabolites coincided with transcriptional induction of upstream enzymes in the KP. Striatal KP induction was also temporally associated—but did not directly correlate—with serotonin losses in the brain. CSF quinolinic acid/tryptophan ratios were found to be the earliest predictor of neurological disease in untreated SIV-infected macaques, outperforming other KP metabolites as well as the putative biomarkers interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1). Finally, cART did not restore KP metabolites to control levels in the striatum despite the control of the virus, though CSF metabolite levels were normalized in most animals. Overall, these results demonstrate that cerebral KP activation is only partially resolved with cART and that CSF QUIN/TRP ratios are an early, predictive biomarker of CNS disease.

Collaboration


Dive into the Francesca M. Notarangelo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui-Qiu Wu

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge