Francesca Masiello
Istituto Superiore di Sanità
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesca Masiello.
Cell Transplantation | 2010
Giovanni Migliaccio; Massimo Sanchez; Francesca Masiello; Valentina Tirelli; Lilian Varricchio; Carolyn Whitsett; Anna Rita Migliaccio
Ex vivo-generated erythroblasts represent alternative transfusion products. However, inclusion of bovine components in media used for their growth precludes clinical use, highlighting the importance of developing culture media based on pharmaceutical grade reagents. In addition, because adult blood generates ex vivo lower numbers of erythroblasts than cord blood, cord blood has been proposed as the source of choice for ex vivo erythroblast production. To clarify the potential of adult blood to generate erythroblasts ex vivo, experiments were designed to identify growth factors [stem cell factor (SCF), interleukin-3 (IL-3), erythropoietin (EPO), and/or thrombopoietin (TPO)] and the optimal concentration and addition schedule of hormones (dexamethasone and estradiol) sustaining maximal erythroid amplification from adult blood mononuclear cells (MNC) using media with serum previously defined as human erythroid massive amplification culture (HEMAser). Adult MNC stimulated with SCF and IL-3 in combination with EPO generated a 6–12-fold increase in erythroid cells while TPO was ineffective. Dexamethasone and estradiol (both at 10−6 M) exerted partially overlapping but nonredundant functions. Dexamethasone was indispensable in the first 10 days of culture while estradiol was required from day 10 on. The growth factor and hormone combinations identified in HEMAser were then used to formulate a media composed of dialyzed pharmaceutical grade human albumin, human albumin-lipid liposomes, and iron-saturated recombinant human tranferrin (HEMAdef). HEMAdef sustained erythroid amplification as efficiently as HEMAser for cord blood MNC and 10-fold higher than HEMAser for adult blood MNC. In fact, the numbers of erythroblasts generated in HEMAdef by adult MNC were similar to those generated by cord blood MNC. In conclusion, this study identifies growth factors, hormone combinations, and human protein-based media that allow similar levels of ex vivo erythroid expansion from adult and cord blood MNC, paving the way to evaluate adult blood as a source of ex vivo-expanded erythroblasts for transfusion.
Blood | 2013
Maria Zingariello; Fabrizio Martelli; Fiorella Ciaffoni; Francesca Masiello; Barbara Ghinassi; Emanuela D'Amore; Margherita Massa; Giovanni Barosi; Laura Sancillo; Xiaochun Li; Judith D. Goldberg; Rosa Alba Rana; Anna Rita Migliaccio
Primary myelofibrosis (PMF) is characterized by fibrosis, ineffective hematopoiesis in marrow, and hematopoiesis in extramedullary sites and is associated with abnormal megakaryocyte (MK) development and increased transforming growth factor (TGF)-β1 release. To clarify the role of TGF-β1 in the pathogenesis of this disease, the TGF-β1 signaling pathway of marrow and spleen of the Gata1(low) mouse model of myelofibrosis (MF) was profiled and the consequences of inhibition of TGF-β1 signaling on disease manifestations determined. The expression of 20 genes in marrow and 36 genes in spleen of Gata1(low) mice was altered. David-pathway analyses identified alterations of TGF-β1, Hedgehog, and p53 signaling in marrow and spleen and of mammalian target of rapamycin (mTOR) in spleen only and predicted that these alterations would induce consequences consistent with the Gata1(low) phenotype (increased apoptosis and G1 arrest both in marrow and spleen and increased osteoblast differentiation and reduced ubiquitin-mediated proteolysis in marrow only). Inhibition of TGF-β1 signaling normalized the expression of p53-related genes, restoring hematopoiesis and MK development and reducing fibrosis, neovascularization, and osteogenesis in marrow. It also normalized p53/mTOR/Hedgehog-related genes in spleen, reducing extramedullary hematopoiesis. These data identify altered expression signatures of TGF-β1 signaling that may be responsible for MF in Gata1(low) mice and may represent additional targets for therapeutic intervention in PMF.
Blood | 2015
Alister P.W. Funnell; Paolo Prontera; Valentina Ottaviani; Maria Piccione; Antonino Giambona; Aurelio Maggio; Fiorella Ciaffoni; Sandra Stehling-Sun; Manuela Marra; Francesca Masiello; Lilian Varricchio; John A. Stamatoyannopoulos; Anna Rita Migliaccio; Thalia Papayannopoulou
Elevated fetal hemoglobin (HbF) ameliorates the clinical severity of hemoglobinopathies such as β-thalassemia and sickle cell anemia. Currently, the only curative approach for individuals under chronic transfusion/chelation support therapy is allogeneic stem cell transplantation. However, recent analyses of heritable variations in HbF levels have provided a new therapeutic target for HbF reactivation: the transcriptional repressor BCL11A. Erythroid-specific BCL11A abrogation is now actively being sought as a therapeutic avenue, but the specific impact of such disruption in humans remains to be determined. Although single nucleotide polymorphisms in BCL11A erythroid regulatory elements have been reported, coding mutations are scarcer. It is thus of great interest that patients have recently been described with microdeletions encompassing BCL11A. These patients display neurodevelopmental abnormalities, but whether they show increased HbF has not been reported. We have examined the hematological phenotype, HbF levels, and erythroid BCL11A expression in 3 such patients. Haploinsufficiency of BCL11A induces only partial developmental γ-globin silencing. Of greater interest is that a patient with a downstream deletion exhibits reduced BCL11A expression and increased HbF. Novel erythroid-specific regulatory elements in this region may be required for normal erythroid BCL11A expression, whereas loss of separate elements in the developing brain may explain the neurological phenotype.
Haematologica | 2015
Mario Falchi; Lilian Varricchio; Fabrizio Martelli; Francesca Masiello; Giulia Federici; Maria Zingariello; Gabriella Girelli; Carolyn Whitsett; Emanuel F. Petricoin; Søren K. Moestrup; Ann Zeuner; Anna Rita Migliaccio
Cultures of human CD34pos cells stimulated with erythroid growth factors plus dexamethasone, a model for stress erythropoiesis, generate numerous erythroid cells plus a few macrophages (approx. 3%; 3:1 positive and negative for CD169). Interactions occurring between erythroblasts and macrophages in these cultures and the biological effects associated with these interactions were documented by live phase-contrast videomicroscopy. Macrophages expressed high motility interacting with hundreds/thousands of erythroblasts per hour. CD169pos macrophages established multiple rapid ‘loose’ interactions with proerythroblasts leading to formation of transient erythroblastic island-like structures. By contrast, CD169neg macrophages established ‘tight’ interactions with mature erythroblasts and phagocytosed these cells. ‘Loose’ interactions of CD169pos macrophages were associated with proerythroblast cytokinesis (the M phase of the cell cycle) suggesting that these interactions may promote proerythroblast duplication. This hypothesis was tested by experiments that showed that as few as 103 macrophages significantly increased levels of 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide incorporation frequency in S/G2/M and cytokinesis expressed by proerythroblasts over 24 h of culture. These effects were observed also when macrophages were co-cultured with dexamethasone directly conjugated to a macrophage-specific CD163 antibody. In conclusion, in addition to promoting proerythroblast proliferation directly, dexamethasone stimulates expansion of these cells indirectly by stimulating maturation and cytokinesis supporting activity of macrophages.
Haematologica | 2015
Esther Heideveld; Francesca Masiello; Manuela Marra; Fatemehsadat Esteghamat; Nurcan Yagci; Marieke von Lindern; Anna Rita Migliaccio; Emile van den Akker
Expansion of erythroblasts from human peripheral blood mononuclear cells is 4- to 15-fold more efficient than that of CD34+ cells purified from peripheral blood mononuclear cells. In addition, purified CD34+ and CD34− populations from blood do not reconstitute this erythroid yield, suggesting a role for feeder cells present in blood mononuclear cells that increase hematopoietic output. Immunodepleting peripheral blood mononuclear cells for CD14+ cells reduced hematopoietic stem and progenitor cell expansion. Conversely, the yield was increased upon co-culture of CD34+ cells with CD14+ cells (full contact or transwell assays) or CD34+ cells re-constituted in conditioned medium from CD14+ cells. In particular, CD14++CD16+ intermediate monocytes/macrophages enhanced erythroblast outgrowth from CD34+ cells. No effect of CD14+ cells on erythroblasts themselves was observed. However, 2 days of co-culturing CD34+ and CD14+ cells increased CD34+ cell numbers and colony-forming units 5-fold. Proliferation assays suggested that CD14+ cells sustain CD34+ cell survival but not proliferation. These data identify previously unrecognized erythroid and non-erythroid CD34− and CD34+ populations in blood that contribute to the erythroid yield. A flow cytometry panel containing CD34/CD36 can be used to follow specific stages during CD34+ differentiation to erythroblasts. We have shown modulation of hematopoietic stem and progenitor cell survival by CD14+ cells present in peripheral blood mononuclear cells which can also be found near specific hematopoietic niches in the bone marrow.
Blood Cells Molecules and Diseases | 2011
Giovanni Migliaccio; Francesca Masiello; Valentina Tirelli; Massimo Sanchez; Lilian Varricchio; Carolyn Whitsett; Anna Rita Migliaccio
The number of erythroblasts generated ex-vivo under human-erythroid massive-amplification conditions by mononuclear cells from one unit of adult blood (~10(10)) are insufficient for transfusion (~10(12) red cells), emphasizing the need for studies to characterize cellular interactions during culture to increase erythroblast production. To identify the cell populations which generate erythroblasts under human-erythroid-massive-amplification conditions and the factors that limit proliferation, day 10 non-erythroblasts and immature- and mature-erythroblasts were separated by sorting, labelled with carboxyfluorescein-diacetate-succinimidyl-ester and re-cultured either under these conditions (for proliferation, maturation and/or apoptosis/autophagy determinations) or in semisolid media (for progenitor cell determination). Non-erythroblasts contained 54% of the progenitor cells but did not grow under human-erythroid-massive-amplification conditions. Immature-erythroblasts contained 25% of the progenitor cells and generated erythroblasts under human-erythroid-massive-amplification conditions (FI at 48 h=2.57±1.15). Mature-erythroblasts did not generate colonies and died in human-erythroid-massive-amplification conditions. In sequential sorting/re-culture experiments, immature-erythroblasts retained the ability to generate erythroblasts for 6 days and generated 2-5-fold more cells than the corresponding unfractionated population, suggesting that mature-erythroblasts may limit erythroblast expansion. In co-cultures of carboxyfluorescein-diacetate-succinimidyl-ester-labelled-immature-erythroblasts with mature-erythroblasts at increasing ratios, cell numbers did not increase and proliferation, maturation and apoptotic rates were unchanged. However, Acridine Orange staining (a marker for autophagic death) increased from ~3.2% in cultures with immature-erythroblasts alone to 14-22% in cultures of mature-erythroblasts with and without immature-erythroblasts. In conclusion, these data identify immature-erythroblasts as the cells that generate additional erythroblasts in human-erythroid-massive-amplification cultures and autophagy as the leading cause of death limiting the final cellular output of these cultures.
American Journal of Hematology | 2013
Todd Hricik; Giulia Federici; Ann Zeuner; Giuliana Alimena; Agostino Tafuri; Valentina Tirelli; Lilian Varricchio; Francesca Masiello; Fiorella Ciaffoni; Stefania Vaglio; Emanuel F. Petricoin; Gabriella Girelli; Ross L. Levine; Anna Rita Migliaccio
Erythropoiesis is a tightly regulated process which becomes decoupled from its normal differentiation program in patients with polycythemia vera (PV). Somatic mutations in JAK2 are commonly associated with this myeloid proliferative disorder. To gain insight into the molecular events that are required for abnormally developing erythroid cells to escape dependence on normal growth signals, we performed in vitro expansion of mature erythroblasts (ERY) from seven normal healthy donors and from seven polycythemic patients in the presence of IL3, EPO, SCF for 10, 11, or 13 days. Normal ERYs required exposure to the glucocorticoid dexamethasone (Dex) for expansion, while PV‐derived ERYs expanded in the absence of dexamethasone. RNA expression profiling revealed enrichment of two known oncogenes, GPR56 and RAB4a, in PV‐derived ERYs along with reduced expression levels of transcription factor TAL1 (ANOVA FDR < 0.05). While both normal and polycythemic‐derived ERYs integrated signaling cascades for growth, they did so via different signaling pathways which are represented by their differential phospho‐profiles. Our results show that normal ERYs displayed greater levels of phosphorylation of EGFR, PDGFRβ, TGFβ, and cKit, while PV‐derived ERYs were characterized by increased phosphorylation of cytoplasmic kinases in the JAK/STAT, PI3K, and GATA1 pathways. Together these data suggest that PV erythroblast expansion and maturation may be maintained and enriched in the absence of dexamethasone through reduced TAL1 expression and by accessing additional signaling cascades. Members of this acquired repertoire may provide important insight into the pathogenesis of aberrant erythropoiesis in myeloproliferative neoplasms such as polycythemia vera. Am. J. Hematol. 88:723–729, 2013.
Stem Cells International | 2011
Valentina Tirelli; Barbara Ghinassi; Anna Rita Migliaccio; Carolyn Whitsett; Francesca Masiello; Massimo Sanchez; Giovanni Migliaccio
In Human Erythroid Massive Amplification (HEMA) cultures, AB mononuclear cells (MNC) generate 1-log more erythroid cells (EBs) than the corresponding CD34pos cells, suggesting that MNC may also contain CD34neg HPC. To clarify the phenotype of AB HPC which generate EBs in these cultures, flow cytometric profiling for CD34/CD36 expression, followed by isolation and functional characterization (colony-forming-ability in semisolid-media and fold-increase in HEMA) were performed. Four populations with erythroid differentiation potential were identified: CD34posCD36neg (0.1%); CD34posCD36pos (barely detectable-0.1%); CD34negCD36low (2%) and CD34negCD36neg (75%). In semisolid-media, CD34posCD36neg cells generated BFU-E and CFU-GM (in a 1 : 1 ratio), CD34negCD36neg cells mostly BFU-E (87%) and CD34posCD36pos and CD34negCD36low cells were not tested due to low numbers. Under HEMA conditions, CD34posCD36neg, CD34posCD36pos, CD34negCD36low and CD34negCD36neg cells generated EBs with fold-increases of ≈9,000, 100, 60 and 1, respectively, and maturation times (day with >10% CD36highCD235ahigh cells) of 10–7 days. Pyrenocytes were generated only by CD34neg/CD36neg cells by day 15. These results confirm that the majority of HPC in AB express CD34 but identify additional CD34neg populations with erythroid differentiation potential which, based on differences in fold-increase and maturation times, may represent a hierarchy of HPC present in AB.
Stem Cells International | 2011
Barbara Ghinassi; Leda Ferro; Francesca Masiello; Valentina Tirelli; Massimo Sanchez; Giovanni Migliaccio; Carolyn Whitsett; Stefan S. Kachala; Isabelle Riviere; Michel Sadelain; Anna Rita Migliaccio
Ex vivo expanded erythroblasts (EBs) may serve as advanced transfusion products provided that lodgment occurs in the macrophage-niche of the marrow permitting maturation. EBs expanded from adult and cord blood expressed the receptors (CXCR4, VLA-4, and P-selectin ligand 1) necessary for interaction with macrophages. However, 4-days following transfusion to intact NOD/SCID/IL2Rγ(null) mice, CD235a(pos) EBs were observed inside CD235a(neg) splenic cells suggesting that they underwent phagocytosis. When splenectomized and intact NOD/SCID/IL2Rγ(null) mice were transfused using retrovirally labeled human EBs, human cells were visualized by bioluminescence imaging only in splenectomized animals. Four days after injection, human CD235a(pos) cells were detected in marrow and liver of splenectomized mice but only in spleen of controls. Human CD235a(pos) erythrocytes in blood remained low in all cases. These studies establish splenectomized NOD/SCID/IL2Rγ(null) mice as a suitable model for tracking and quantification of human EBs in vivo.
Transfusion | 2009
Giovanni Migliaccio; Massimo Sanchez; Amanda Leblanc; Francesca Masiello; Tirelli; Anna Rita Migliaccio; Najfeld; Carolyn Whitsett
BACKGROUND: Cultured human erythroid cells derived in vitro may represent alternative transfusion products. It is unknown, however, if these ex vivo expanded erythroid cells remain functional or develop genetic abnormalities after storage.