Francesca Mattiroli
Netherlands Cancer Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesca Mattiroli.
The EMBO Journal | 2012
Frédérick A. Mallette; Francesca Mattiroli; Gaofeng Cui; Leah C. Young; Michael J. Hendzel; Georges Mer; Titia K. Sixma; Stéphane Richard
In response to DNA damage, cells initiate complex signalling cascades leading to growth arrest and DNA repair. The recruitment of 53BP1 to damaged sites requires the activation of the ubiquitination cascade controlled by the E3 ubiquitin ligases RNF8 and RNF168, and methylation of histone H4 on lysine 20. However, molecular events that regulate the accessibility of methylated histones, to allow the recruitment of 53BP1 to DNA breaks, are unclear. Here, we show that like 53BP1, the JMJD2A (also known as KDM4A) tandem tudor domain binds dimethylated histone H4K20; however, JMJD2A is degraded by the proteasome following the DNA damage in an RNF8‐dependent manner. We demonstrate that JMJD2A is ubiquitinated by RNF8 and RNF168. Moreover, ectopic expression of JMJD2A abrogates 53BP1 recruitment to DNA damage sites, indicating a role in antagonizing 53BP1 for methylated histone marks. The combined knockdown of JMJD2A and JMJD2B significantly rescued the ability of RNF8‐ and RNF168‐deficient cells to form 53BP1 foci. We propose that the RNF8‐dependent degradation of JMJD2A regulates DNA repair by controlling the recruitment of 53BP1 at DNA damage sites.
Journal of Clinical Investigation | 2012
Karim Nacerddine; Jean-Bernard Beaudry; Vasudeva Ginjala; Bart A. Westerman; Francesca Mattiroli; Ji-Ying Song; Henk van der Poel; Olga Balagué Ponz; Colin Pritchard; Paulien Cornelissen-Steijger; John Zevenhoven; Ellen Tanger; Titia K. Sixma; Shridar Ganesan; Maarten van Lohuizen
Prostate cancer (PCa) is a major lethal malignancy in men, but the molecular events and their interplay underlying prostate carcinogenesis remain poorly understood. Epigenetic events and the upregulation of polycomb group silencing proteins including Bmi1 have been described to occur during PCa progression. Here, we found that conditional overexpression of Bmi1 in mice induced prostatic intraepithelial neoplasia, and elicited invasive adenocarcinoma when combined with PTEN haploinsufficiency. In addition, Bmi1 and the PI3K/Akt pathway were coactivated in a substantial fraction of human high-grade tumors. We found that Akt mediated Bmi1 phosphorylation, enhancing its oncogenic potential in an Ink4a/Arf-independent manner. This process also modulated the DNA damage response and affected genomic stability. Together, our findings demonstrate the etiological role of Bmi1 in PCa, unravel an oncogenic collaboration between Bmi1 and the PI3K/Akt pathway, and provide mechanistic insights into the modulation of Bmi1 function by phosphorylation during prostate carcinogenesis.
Nature Structural & Molecular Biology | 2014
Francesca Mattiroli; Titia K. Sixma
Ubiquitin and ubiquitin-like modifications are central to virtually all cellular signaling pathways. They occur primarily on lysine residues of target proteins and stimulate a large number of downstream signals. The diversity of these signals depends on the type, location and dynamics of the modification, but the role of the exact site of modification and the selectivity for specific lysines are poorly understood. Here we review the current literature on lysine specificity in these modifications, and we highlight the known signaling mechanisms and the open questions that pose future challenges to ubiquitin research.
Nature Communications | 2014
Francesca Mattiroli; Danny D. Sahtoe; Willem J. van Dijk; Titia K. Sixma
During DNA damage response, the RING E3 ligase RNF168 ubiquitinates nucleosomal H2A at K13–15. Here we show that the ubiquitination reaction is regulated by its substrate. We define a region on the RING domain important for target recognition and identify the H2A/H2B dimer as the minimal substrate to confer lysine specificity to the RNF168 reaction. Importantly, we find an active role for the substrate in the reaction. H2A/H2B dimers and nucleosomes enhance the E3-mediated discharge of ubiquitin from the E2 and redirect the reaction towards the relevant target, in a process that depends on an intact acidic patch. This active contribution of a region distal from the target lysine provides regulation of the specific K13–15 ubiquitination reaction during the complex signalling process at DNA damage sites.
Journal of Biological Chemistry | 2012
Esther Pilla; Ulrike Möller; Guido Sauer; Francesca Mattiroli; Frauke Melchior; Ruth Geiss-Friedlander
Background: Interactions of SUMO isoforms/paralogs involve a groove on SUMO1–3 and a SIM on the downstream effector. Results: A novel motif in DPP9 binds to a loop on SUMO1, leading to allosteric activation of DPP9. Conclusion: The SUMO1-loop is an additional surface for noncovalent interactions, allowing discrimination between SUMO1–3. Significance: Learning how SUMO isoforms/paralogs are recognized advances our understanding on events downstream of sumoylation. Sumoylation affects many cellular processes by regulating the interactions of modified targets with downstream effectors. Here we identified the cytosolic dipeptidyl peptidase 9 (DPP9) as a SUMO1 interacting protein. Surprisingly, DPP9 binds to SUMO1 independent of the well known SUMO interacting motif, but instead interacts with a loop involving Glu67 of SUMO1. Intriguingly, DPP9 selectively associates with SUMO1 and not SUMO2, due to a more positive charge in the SUMO1-loop. We mapped the SUMO-binding site of DPP9 to an extended arm structure, predicted to directly flank the substrate entry site. Importantly, whereas mutants in the SUMO1-binding arm are less active compared with wild-type DPP9, SUMO1 stimulates DPP9 activity. Consistent with this, silencing of SUMO1 leads to a reduced cytosolic prolyl-peptidase activity. Taken together, these results suggest that SUMO1, or more likely, a sumoylated protein, acts as an allosteric regulator of DPP9.
EMBO Reports | 2015
Francesca Mattiroli; Sheena D'Arcy; Karolin Luger
Histone proteins dynamically regulate chromatin structure and epigenetic signaling to maintain cell homeostasis. These processes require controlled spatial and temporal deposition and eviction of histones by their dedicated chaperones. With the evolution of histone variants, a network of functionally specific histone chaperones has emerged. Molecular details of the determinants of chaperone specificity for different histone variants are only slowly being resolved. A complete understanding of these processes is essential to shed light on the genuine biological roles of histone variants, their chaperones, and their impact on chromatin dynamics.
Science | 2017
Francesca Mattiroli; Sudipta Bhattacharyya; Pamela N. Dyer; Alison E. White; Kathleen Sandman; Brett W. Burkhart; Kyle R. Byrne; Thomas Lee; Natalie G. Ahn; Thomas J. Santangelo; John N. Reeve; Karolin Luger
Origin of DNA compaction As a repeating unit in eukaryotic chromatin, a nucleosome wraps DNA in superhelical turns around a histone octamer. Mattiroli et al. present the crystal structure of an archaeal histone-DNA complex in which the histone-mediated DNA geometry is exactly the same as that in the nucleosome. Comparing features of archaeal and eukaryotic chromatin structures offers important insights into the evolution of eukaryotic nucleosomes. Science, this issue p. 609 Archaeal histone homodimers form a complex with DNA that is similar to the eukaryotic nucleosome. Small basic proteins present in most Archaea share a common ancestor with the eukaryotic core histones. We report the crystal structure of an archaeal histone-DNA complex. DNA wraps around an extended polymer, formed by archaeal histone homodimers, in a quasi-continuous superhelix with the same geometry as DNA in the eukaryotic nucleosome. Substitutions of a conserved glycine at the interface of adjacent protein layers destabilize archaeal chromatin, reduce growth rate, and impair transcription regulation, confirming the biological importance of the polymeric structure. Our data establish that the histone-based mechanism of DNA compaction predates the nucleosome, illuminating the origin of the nucleosome.
DNA Repair | 2009
Richard G. Hibbert; Francesca Mattiroli; Titia K. Sixma
Ubiquitin conjugation plays critical roles in virtually all DNA repair pathways. This review provides an overview of the known multi-domain RING/Ubox E3 ligases and their domain structures. An analysis of known RING/Ubox X-ray and NMR structures leads to a discussion of the effects of dimerization. Structural and mechanistic data relating to the E3 ligase preferences for E2 interaction and chain-type specificity are reviewed and the role of the E3 ligases in regulation of the repair pathways is discussed.
eLife | 2017
Francesca Mattiroli; Yajie Gu; Tejas Yadav; Jeremy L. Balsbaugh; Michael R Harris; Eileen S Findlay; Yang Liu; Catherine A. Radebaugh; Laurie A. Stargell; Natalie G. Ahn; Iestyn Whitehouse; Karolin Luger
Nucleosome assembly in the wake of DNA replication is a key process that regulates cell identity and survival. Chromatin assembly factor 1 (CAF-1) is a H3-H4 histone chaperone that associates with the replisome and orchestrates chromatin assembly following DNA synthesis. Little is known about the mechanism and structure of this key complex. Here we investigate the CAF-1•H3-H4 binding mode and the mechanism of nucleosome assembly. We show that yeast CAF-1 binding to a H3-H4 dimer activates the Cac1 winged helix domain interaction with DNA. This drives the formation of a transient CAF-1•histone•DNA intermediate containing two CAF-1 complexes, each associated with one H3-H4 dimer. Here, the (H3-H4)2 tetramer is formed and deposited onto DNA. Our work elucidates the molecular mechanism for histone deposition by CAF-1, a reaction that has remained elusive for other histone chaperones, and it advances our understanding of how nucleosomes and their epigenetic information are maintained through DNA replication. DOI: http://dx.doi.org/10.7554/eLife.22799.001
Methods in Enzymology | 2016
Uma M. Muthurajan; Francesca Mattiroli; S. Bergeron; Keda Zhou; Y. Gu; Srinivas Chakravarthy; Pamela N. Dyer; Thomas C. Irving; Karolin Luger
Chromatin accessibility is modulated by structural transitions that provide timely access to the genetic and epigenetic information during many essential nuclear processes. These transitions are orchestrated by regulatory proteins that coordinate intricate structural modifications and signaling pathways. In vitro reconstituted chromatin samples from defined components are instrumental in defining the mechanistic details of such processes. The bottleneck to appropriate in vitro analysis is the production of high quality, and quality-controlled, chromatin substrates. In this chapter, we describe methods for in vitro chromatin reconstitution and quality control. We highlight the strengths and weaknesses of various approaches and emphasize quality control steps that ensure reconstitution of a bona fide homogenous chromatin preparation. This is essential for optimal reproducibility and reliability of ensuing experiments using chromatin substrates.