Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Mazzola is active.

Publication


Featured researches published by Francesca Mazzola.


Biochemical and Biophysical Research Communications | 2002

Identification of a novel human nicotinamide mononucleotide adenylyltransferase.

Nadia Raffaelli; Leonardo Sorci; Adolfo Amici; Monica Emanuelli; Francesca Mazzola; Giulio Magni

The enzyme nicotinamide mononucleotide adenylyltransferase is an ubiquitous enzyme catalyzing an essential step in NAD (NADP) biosynthetic pathway. In human cells, the nuclear enzyme, which we will now call NMNAT-1, has been the only known enzyme of this type for over 10 years. Here we describe the cloning and expression of a human cDNA encoding a novel 34.4kDa protein, that shares significant homology with the 31.9kDa NMNAT-1. We propose to call this enzyme NMNAT-2. Purified recombinant NMNAT-2 is endowed with NMN and nicotinic acid mononucleotide adenylyltransferase activities, but differs from NMNAT-1 with regard to chromosomal and cellular localization, tissue-specificity of expression, and molecular properties, supporting the idea that the two enzymes might play distinct physiological roles in NAD homeostasis.


Journal of Cell Biology | 2009

WldS protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice

Laura Conforti; Anna L. Wilbrey; Giacomo Morreale; Lucie Janeckova; Bogdan Beirowski; Robert Adalbert; Francesca Mazzola; Michele Di Stefano; Robert Hartley; Elisabetta Babetto; Trevor Stanley Smith; Jonathan Gilley; Richard A. Billington; Armando A. Genazzani; Richard R. Ribchester; Giulio Magni; Michael P. Coleman

The slow Wallerian degeneration (WldS) protein protects injured axons from degeneration. This unusual chimeric protein fuses a 70–amino acid N-terminal sequence from the Ube4b multiubiquitination factor with the nicotinamide adenine dinucleotide–synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1. The requirement for these components and the mechanism of WldS-mediated neuroprotection remain highly controversial. The Ube4b domain is necessary for the protective phenotype in mice, but precisely which sequence is essential and why are unclear. Binding to the AAA adenosine triphosphatase valosin-containing protein (VCP)/p97 is the only known biochemical property of the Ube4b domain. Using an in vivo approach, we show that removing the VCP-binding sequence abolishes axon protection. Replacing the WldS VCP-binding domain with an alternative ataxin-3–derived VCP-binding sequence restores its protective function. Enzyme-dead WldS is unable to delay Wallerian degeneration in mice. Thus, neither domain is effective without the function of the other. WldS requires both of its components to protect axons from degeneration.


The Journal of Neuroscience | 2009

Non-nuclear Wld(S) determines its neuroprotective efficacy for axons and synapses in vivo.

Bogdan Beirowski; Elisabetta Babetto; Jon Gilley; Francesca Mazzola; Laura Conforti; Lucie Janeckova; Giulio Magni; Richard R. Ribchester; Michael P. Coleman

Axon degeneration contributes widely to neurodegenerative disease but its regulation is poorly understood. The Wallerian degeneration slow (WldS) protein protects axons dose-dependently in many circumstances but is paradoxically abundant in nuclei. To test the hypothesis that WldS acts within nuclei in vivo, we redistributed it from nucleus to cytoplasm in transgenic mice. Surprisingly, instead of weakening the phenotype as expected, extranuclear WldS significantly enhanced structural and functional preservation of transected distal axons and their synapses. In contrast to native WldS mutants, distal axon stumps remained continuous and ultrastructurally intact up to 7 weeks after injury and motor nerve terminals were robustly preserved even in older mice, remaining functional for 6 d. Moreover, we detect extranuclear WldS for the first time in vivo, and higher axoplasmic levels in transgenic mice with WldS redistribution. Cytoplasmic WldS fractionated predominantly with mitochondria and microsomes. We conclude that WldS can act in one or more non-nuclear compartments to protect axons and synapses, and that molecular changes can enhance its therapeutic potential.


Blood | 2015

Extracellular nicotinamide phosphoribosyltransferase (NAMPT) promotes M2 macrophage polarization in chronic lymphocytic leukemia

Valentina Audrito; Sara Serra; Davide Brusa; Francesca Mazzola; Francesca Arruga; Tiziana Vaisitti; Marta Coscia; Rossana Maffei; Davide Rossi; Tao Wang; Giorgio Inghirami; Menico Rizzi; Gianluca Gaidano; Joe G. N. Garcia; Cynthia Wolberger; Nadia Raffaelli; Silvia Deaglio

Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in nicotinamide adenine dinucleotide biosynthesis. In the extracellular compartment, it exhibits cytokine-/adipokinelike properties, suggesting that it stands at the crossroad between metabolism and inflammation. Here we show that both intracellular and extracellular NAMPT levels are increased in cells and plasma of chronic lymphocytic leukemia (CLL) patients. The extracellular form (eNAMPT) is produced by CLL lymphocytes upon B-cell receptor, Toll-like receptor, and nuclear factor κB (NF-κB) signaling pathway activation. eNAMPT is important for differentiation of resting monocytes, polarizing them toward tumor-supporting M2 macrophages. These cells express high levels of CD163, CD206, and indoleamine 2,3-dioxygenase and secrete immunosuppressive (interleukin [IL] 10, CC chemokine ligand 18) and tumor-promoting (IL-6, IL-8) cytokines. NAMPT-primed M2 macrophages activate extracellular-regulated kinase 1/2, signal transducer and activator of transcription 3, and NF-κB signaling; promote leukemic cell survival; and reduce T-cell responses. These effects are independent of the enzymatic activity of NAMPT, as inferred from the use of an enzymatically inactive mutant. Overall, these results reveal that eNAMPT is a critical element in the induction of an immunosuppressive and tumor-promoting microenvironment of CLL.


FEBS Journal | 2011

Reducing expression of NAD+ synthesizing enzyme NMNAT1 does not affect the rate of Wallerian degeneration

Laura Conforti; Lucie Janeckova; Diana Wagner; Francesca Mazzola; Lucia Cialabrini; Michele Di Stefano; Giuseppe Orsomando; Giulio Magni; Caterina Bendotti; Neil Smyth; Michael P. Coleman

NAD+ synthesizing enzyme NMNAT1 constitutes most of the sequence of neuroprotective protein WldS, which delays axon degeneration by 10‐fold. NMNAT1 activity is necessary but not sufficient for WldS neuroprotection in mice and 70 amino acids at the N‐terminus of WldS, derived from polyubiquitination factor Ube4b, enhance axon protection by NMNAT1. NMNAT1 activity can confer neuroprotection when redistributed outside the nucleus or when highly overexpressed in vitro and partially in Drosophila. However, the role of endogenous NMNAT1 in normal axon maintenance and in Wallerian degeneration has not been elucidated yet. To address this question we disrupted the Nmnat1 locus by gene targeting. Homozygous Nmnat1 knockout mice do not survive to birth, indicating that extranuclear NMNAT isoforms cannot compensate for its loss. Heterozygous Nmnat1 knockout mice develop normally and do not show spontaneous neurodegeneration or axon pathology. Wallerian degeneration after sciatic nerve lesion is neither accelerated nor delayed in these mice, consistent with the proposal that other endogenous NMNAT isoforms play a principal role in Wallerian degeneration.


FEBS Journal | 2014

Novel assay for simultaneous measurement of pyridine mononucleotides synthesizing activities allows dissection of the NAD(+) biosynthetic machinery in mammalian cells.

Federica Zamporlini; Silverio Ruggieri; Francesca Mazzola; Adolfo Amici; Giuseppe Orsomando; Nadia Raffaelli

The redox coenzyme NAD+ is also a rate‐limiting co‐substrate for several enzymes that consume the molecule, thus rendering its continuous re‐synthesis indispensable. NAD+ biosynthesis has emerged as a therapeutic target due to the relevance of NAD+‐consuming reactions in complex intracellular signaling networks whose alteration leads to many neurologic and metabolic disorders. Distinct metabolic routes, starting from various precursors, are known to support NAD+ biosynthesis with tissue/cell‐specific efficiencies, probably reflecting differential expression of the corresponding rate‐limiting enzymes, i.e. nicotinamide phosphoribosyltransferase, quinolinate phosphoribosyltransferase, nicotinate phosphoribosyltransferase and nicotinamide riboside kinase. Understanding the contribution of these enzymes to NAD+ levels depending on the tissue/cell type and metabolic status is necessary for the rational design of therapeutic strategies aimed at modulating NAD+ availability. Here we report a simple, fast and sensitive coupled fluorometric assay that enables simultaneous determination of the four activities in whole‐cell extracts and biological fluids. Its application to extracts from various mouse tissues, human cell lines and plasma yielded for the first time an overall picture of the tissue/cell‐specific distribution of the activities of the various enzymes. The screening enabled us to gather novel findings, including (a) the presence of quinolinate phosphoribosyltransferase and nicotinamide riboside kinase in all examined tissues/cell lines, indicating that quinolinate and nicotinamide riboside are relevant NAD+ precursors, and (b) the unexpected occurrence of nicotinate phosphoribosyltransferase in human plasma.


PLOS ONE | 2012

Simultaneous single-sample determination of NMNAT isozyme activities in mouse tissues.

Giuseppe Orsomando; Lucia Cialabrini; Adolfo Amici; Francesca Mazzola; Silverio Ruggieri; Laura Conforti; Lucie Janeckova; Michael P. Coleman; Giulio Magni

A novel assay procedure has been developed to allow simultaneous activity discrimination in crude tissue extracts of the three known mammalian nicotinamide mononucleotide adenylyltransferase (NMNAT, EC 2.7.7.1) isozymes. These enzymes catalyse the same key reaction for NAD biosynthesis in different cellular compartments. The present method has been optimized for NMNAT isozymes derived from Mus musculus, a species often used as a model for NAD-biosynthesis-related physiology and disorders, such as peripheral neuropathies. Suitable assay conditions were initially assessed by exploiting the metal-ion dependence of each isozyme recombinantly expressed in bacteria, and further tested after mixing them in vitro. The variable contributions of the three individual isozymes to total NAD synthesis in the complex mixture was calculated by measuring reaction rates under three selected assay conditions, generating three linear simultaneous equations that can be solved by a substitution matrix calculation. Final assay validation was achieved in a tissue extract by comparing the activity and expression levels of individual isozymes, considering their distinctive catalytic efficiencies. Furthermore, considering the key role played by NMNAT activity in preserving axon integrity and physiological function, this assay procedure was applied to both liver and brain extracts from wild-type and Wallerian degeneration slow (WldS) mouse. WldS is a spontaneous mutation causing overexpression of NMNAT1 as a fusion protein, which protects injured axons through a gain-of-function. The results validate our method as a reliable determination of the contributions of the three isozymes to cellular NAD synthesis in different organelles and tissues, and in mutant animals such as WldS.


PLOS ONE | 2013

Genomics-Guided Analysis of NAD Recycling Yields Functional Elucidation of COG1058 as a New Family of Pyrophosphatases

Lucia Cialabrini; Silverio Ruggieri; Marat D. Kazanov; Leonardo Sorci; Francesca Mazzola; Giuseppe Orsomando; Andrei L. Osterman; Nadia Raffaelli

We have recently identified the enzyme NMN deamidase (PncC), which plays a key role in the regeneration of NAD in bacteria by recycling back to the coenzyme the pyridine by-products of its non redox consumption. In several bacterial species, PncC is fused to a COG1058 domain of unknown function, highly conserved and widely distributed in all living organisms. Here, we demonstrate that the PncC-fused domain is endowed with a novel Co+2- and K+-dependent ADP-ribose pyrophosphatase activity, and discuss the functional connection of such an activity with NAD recycling. An in-depth phylogenetic analysis of the COG1058 domain evidenced that in most bacterial species it is fused to PncC, while in α- and some δ-proteobacteria, as well as in archaea and fungi, it occurs as a stand-alone protein. Notably, in mammals and plants it is fused to FAD synthase. We extended the enzymatic characterization to a representative bacterial single-domain protein, which resulted to be a more versatile ADP-ribose pyrophosphatase, active also towards diadenosine 5′-diphosphate and FAD. Multiple sequence alignment analysis, and superposition of the available three-dimensional structure of an archaeal COG1058 member with the structure of the enzyme MoeA of the molybdenum cofactor biosynthesis, allowed identification of residues likely involved in catalysis. Their role has been confirmed by site-directed mutagenesis.


Bioorganic & Medicinal Chemistry | 2009

Selective inhibition of nicotinamide adenine dinucleotide kinases by dinucleoside disulfide mimics of nicotinamide adenine dinucleotide analogues.

Riccardo Petrelli; Yuk Y. Sham; Liqiang Chen; Krzysztof Felczak; Eric M. Bennett; Daniel J. Wilson; Courtney C. Aldrich; Jose S. Yu; Loredana Cappellacci; Palmarisa Franchetti; Mario Grifantini; Francesca Mazzola; Michele Di Stefano; Giulio Magni; Krzysztof W. Pankiewicz

Diadenosine disulfide (5) was reported to inhibit NAD kinase from Listeria monocytogenes and the crystal structure of the enzyme-inhibitor complex has been solved. We have synthesized tiazofurin adenosine disulfide (4) and the disulfide 5, and found that these compounds were moderate inhibitors of human NAD kinase (IC(50)=110 microM and IC(50)=87 microM, respectively) and Mycobacterium tuberculosis NAD kinase (IC(50)=80 microM and IC(50)=45 microM, respectively). We also found that NAD mimics with a short disulfide (-S-S-) moiety were able to bind in the folded (compact) conformation but not in the common extended conformation, which requires the presence of a longer pyrophosphate (-O-P-O-P-O-) linkage. Since majority of NAD-dependent enzymes bind NAD in the extended conformation, selective inhibition of NAD kinases by disulfide analogues has been observed. Introduction of bromine at the C8 of the adenine ring restricted the adenosine moiety of diadenosine disulfides to the syn conformation making it even more compact. The 8-bromoadenosine adenosine disulfide (14) and its di(8-bromoadenosine) analogue (15) were found to be the most potent inhibitors of human (IC(50)=6 microM) and mycobacterium NAD kinase (IC(50)=14-19 microM reported so far. None of the disulfide analogues showed inhibition of lactate-, and inosine monophosphate-dehydrogenase (IMPDH), enzymes that bind NAD in the extended conformation.


Neuroscience | 2010

WldS can delay Wallerian degeneration in mice when interaction with valosin-containing protein is weakened.

Bogdan Beirowski; Giacomo Morreale; Laura Conforti; Francesca Mazzola; M. Di Stefano; Anna L. Wilbrey; Elisabetta Babetto; Lucie Janeckova; Giulio Magni; Michael P. Coleman

Axon degeneration is an early event in many neurodegenerative disorders. In some, the mechanism is related to injury-induced Wallerian degeneration, a proactive death program that can be strongly delayed by the neuroprotective slow Wallerian degeneration protein (Wld(S)) protein. Thus, it is important to understand the Wallerian degeneration mechanism and how Wld(S) blocks it. Wld(S) location is influenced by binding to valosin-containing protein (VCP), an essential protein for many cellular processes including membrane fusion and endoplasmic reticulum-associated degradation. In mice, the N-terminal 16 amino acids (N16), which mediate VCP binding, are essential for Wld(S) to protect axons, a role which another VCP binding sequence can substitute. In Drosophila, the Wld(S) phenotype is weakened by a similar N-terminal truncation and by knocking down the VCP homologue ter94. Neither null nor floxed VCP mice are viable so it is difficult to confirm the requirement for VCP binding in mammals in vivo. However, the hypothesis can be tested further by introducing a Wld(S) missense mutation, altering its affinity for VCP but minimizing the risk of disturbing other aspects of its structure or function. We introduced the R10A mutation, which weakens VCP binding in vitro, and expressed it in transgenic mice. R10AWld(S) fails to co-immunoprecipitate VCP from mouse brain, and only occasionally and faintly accumulates in nuclear foci for which VCP binding is necessary but not sufficient. Surprisingly however, axon protection remains robust and indistinguishable from that in spontaneous Wld(S) mice. We suggest that either N16 has an additional, VCP-independent function in mammals, or that the phenotype requires only weak VCP binding which may be driven forwards in vivo by the high VCP concentration.

Collaboration


Dive into the Francesca Mazzola's collaboration.

Top Co-Authors

Avatar

Giulio Magni

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Nadia Raffaelli

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Orsomando

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adolfo Amici

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucia Cialabrini

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Michele Di Stefano

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Federica Zamporlini

Marche Polytechnic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge