Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Molinari is active.

Publication


Featured researches published by Francesca Molinari.


Journal of Clinical Oncology | 2008

Wild-Type BRAF Is Required for Response to Panitumumab or Cetuximab in Metastatic Colorectal Cancer

Federica Di Nicolantonio; Miriam Martini; Francesca Molinari; Andrea Sartore-Bianchi; Sabrina Arena; Piercarlo Saletti; Sara De Dosso; Luca Mazzucchelli; Milo Frattini; Salvatore Siena; Alberto Bardelli

PURPOSE Cetuximab or panitumumab are effective in 10% to 20% unselected metastatic colorectal cancer (CRC) patients. KRAS mutations account for approximately 30% to 40% patients who are not responsive. The serine-threonine kinase BRAF is the principal effector of KRAS. We hypothesized that, in KRAS wild-type patients, BRAF mutations could have a predictive/prognostic value. PATIENTS AND METHODS We retrospectively analyzed objective tumor responses, time to progression, overall survival (OS), and the mutational status of KRAS and BRAF in 113 tumors from cetuximab- or panitumumab-treated metastatic CRC patients. The effect of the BRAF V600E mutation on cetuximab or panitumumab response was also assessed using cellular models of CRC. Results KRAS mutations were present in 30% of the patients and were associated with resistance to cetuximab or panitumumab (P = .011). The BRAF V600E mutation was detected in 11 of 79 patients who had wild-type KRAS. None of the BRAF-mutated patients responded to treatment, whereas none of the responders carried BRAF mutations (P = .029). BRAF-mutated patients had significantly shorter progression-free survival (P = .011) and OS (P < .0001) than wild-type patients. In CRC cells, the introduction of BRAF V600E allele impaired the therapeutic effect of cetuximab or panitumumab. Treatment with the BRAF inhibitor sorafenib restored sensitivity to panitumumab or cetuximab of CRC cells carrying the V600E allele. CONCLUSION BRAF wild-type is required for response to panitumumab or cetuximab and could be used to select patients who are eligible for the treatment. Double-hit therapies aimed at simultaneous inhibition of epidermal growth factor receptor and BRAF warrant exploration in CRC patients carrying the V600E oncogenic mutation.


Lancet Oncology | 2010

Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis

Wendy De Roock; Bart Claes; David Bernasconi; Jef De Schutter; Bart Biesmans; George Fountzilas; Konstantine T. Kalogeras; Vassiliki Kotoula; Demetris Papamichael; Pierre Laurent-Puig; Frédérique Penault-Llorca; Philippe Rougier; Bruno Vincenzi; Daniele Santini; Giuseppe Tonini; Federico Cappuzzo; Milo Frattini; Francesca Molinari; Piercarlo Saletti; Sara De Dosso; Miriam Martini; Alberto Bardelli; Salvatore Siena; Andrea Sartore-Bianchi; Josep Tabernero; Teresa Macarulla; Frédéric Di Fiore; Alice Gangloff; Fortunato Ciardiello; Per Pfeiffer

BACKGROUND Following the discovery that mutant KRAS is associated with resistance to anti-epidermal growth factor receptor (EGFR) antibodies, the tumours of patients with metastatic colorectal cancer are now profiled for seven KRAS mutations before receiving cetuximab or panitumumab. However, most patients with KRAS wild-type tumours still do not respond. We studied the effect of other downstream mutations on the efficacy of cetuximab in, to our knowledge, the largest cohort to date of patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab plus chemotherapy in the pre-KRAS selection era. METHODS 1022 tumour DNA samples (73 from fresh-frozen and 949 from formalin-fixed, paraffin-embedded tissue) from patients treated with cetuximab between 2001 and 2008 were gathered from 11 centres in seven European countries. 773 primary tumour samples had sufficient quality DNA and were included in mutation frequency analyses; mass spectrometry genotyping of tumour samples for KRAS, BRAF, NRAS, and PIK3CA was done centrally. We analysed objective response, progression-free survival (PFS), and overall survival in molecularly defined subgroups of the 649 chemotherapy-refractory patients treated with cetuximab plus chemotherapy. FINDINGS 40.0% (299/747) of the tumours harboured a KRAS mutation, 14.5% (108/743) harboured a PIK3CA mutation (of which 68.5% [74/108] were located in exon 9 and 20.4% [22/108] in exon 20), 4.7% (36/761) harboured a BRAF mutation, and 2.6% (17/644) harboured an NRAS mutation. KRAS mutants did not derive benefit compared with wild types, with a response rate of 6.7% (17/253) versus 35.8% (126/352; odds ratio [OR] 0.13, 95% CI 0.07-0.22; p<0.0001), a median PFS of 12 weeks versus 24 weeks (hazard ratio [HR] 1.98, 1.66-2.36; p<0.0001), and a median overall survival of 32 weeks versus 50 weeks (1.75, 1.47-2.09; p<0.0001). In KRAS wild types, carriers of BRAF and NRAS mutations had a significantly lower response rate than did BRAF and NRAS wild types, with a response rate of 8.3% (2/24) in carriers of BRAF mutations versus 38.0% in BRAF wild types (124/326; OR 0.15, 95% CI 0.02-0.51; p=0.0012); and 7.7% (1/13) in carriers of NRAS mutations versus 38.1% in NRAS wild types (110/289; OR 0.14, 0.007-0.70; p=0.013). PIK3CA exon 9 mutations had no effect, whereas exon 20 mutations were associated with a worse outcome compared with wild types, with a response rate of 0.0% (0/9) versus 36.8% (121/329; OR 0.00, 0.00-0.89; p=0.029), a median PFS of 11.5 weeks versus 24 weeks (HR 2.52, 1.33-4.78; p=0.013), and a median overall survival of 34 weeks versus 51 weeks (3.29, 1.60-6.74; p=0.0057). Multivariate analysis and conditional inference trees confirmed that, if KRAS is not mutated, assessing BRAF, NRAS, and PIK3CA exon 20 mutations (in that order) gives additional information about outcome. Objective response rates in our series were 24.4% in the unselected population, 36.3% in the KRAS wild-type selected population, and 41.2% in the KRAS, BRAF, NRAS, and PIK3CA exon 20 wild-type population. INTERPRETATION While confirming the negative effect of KRAS mutations on outcome after cetuximab, we show that BRAF, NRAS, and PIK3CA exon 20 mutations are significantly associated with a low response rate. Objective response rates could be improved by additional genotyping of BRAF, NRAS, and PIK3CA exon 20 mutations in a KRAS wild-type population. FUNDING Belgian Federation against Cancer (Stichting tegen Kanker).


Cancer Research | 2009

PIK3CA Mutations in Colorectal Cancer Are Associated with Clinical Resistance to EGFR-Targeted Monoclonal Antibodies

Andrea Sartore-Bianchi; Miriam Martini; Francesca Molinari; Silvio Veronese; Michele Nichelatti; S. Artale; Federica Di Nicolantonio; Piercarlo Saletti; Sara De Dosso; Luca Mazzucchelli; Milo Frattini; Salvatore Siena; Alberto Bardelli

The monoclonal antibodies (moAb) panitumumab and cetuximab target the epidermal growth factor receptor (EGFR) and have proven valuable for the treatment of metastatic colorectal cancer (mCRC). EGFR-mediated signaling involves two main intracellular cascades: on one side KRAS activates BRAF, which in turn triggers the mitogen-activated protein kinases. On the other, membrane localization of the lipid kinase PIK3CA counteracts PTEN and promotes AKT1 phosphorylation, thereby activating a parallel intracellular axis. Constitutive activation of KRAS bypasses the corresponding signaling cascade and, accordingly, patients with mCRC bearing KRAS mutations are clinically resistant to therapy with panitumumab or cetuximab. We hypothesized that mutations activating PIK3CA could also preclude responsiveness to EGFR-targeted moAbs through a similar mechanism. Here, we present the mutational analysis of PIK3CA and KRAS and evaluation of the PTEN protein status in a cohort of 110 patients with mCRC treated with anti-EGFR moAbs. We observed 15 (13.6%) PIK3CA and 32 (29.0%) KRAS mutations. PIK3CA mutations were significantly associated with clinical resistance to panitumumab or cetuximab; none of the mutated patients achieved objective response (P = 0.038). When only KRAS wild-type tumors were analyzed, the statistical correlation was stronger (P = 0.016). Patients with PIK3CA mutations displayed a worse clinical outcome also in terms of progression-free survival (P = 0.035). Our data indicate that PIK3CA mutations can independently hamper the therapeutic response to panitumumab or cetuximab in mCRC. When the molecular status of the PIK3CA/PTEN and KRAS pathways are concomitantly ascertained, up to 70% of mCRC patients unlikely to respond to EGFR moAbs can be identified.


Journal of Clinical Investigation | 2010

Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus

Federica Di Nicolantonio; Sabrina Arena; Josep Tabernero; Stefano Grosso; Francesca Molinari; Teresa Macarulla; Mariangela Russo; Carlotta Cancelliere; Davide Zecchin; Luca Mazzucchelli; Takehiko Sasazuki; Senji Shirasawa; Massimo Geuna; Milo Frattini; José Baselga; Margherita Gallicchio; Stefano Biffo; Alberto Bardelli

Personalized cancer medicine is based on the concept that targeted therapies are effective on subsets of patients whose tumors carry specific molecular alterations. Several mammalian target of rapamycin (mTOR) inhibitors are in preclinical or clinical trials for cancers, but the molecular basis of sensitivity or resistance to these inhibitors among patients is largely unknown. Here we have identified oncogenic variants of phosphoinositide-3-kinase, catalytic, alpha polypeptide (PIK3CA) and KRAS as determinants of response to the mTOR inhibitor everolimus. Human cancer cells carrying alterations in the PI3K pathway were responsive to everolimus, both in vitro and in vivo, except when KRAS mutations occurred concomitantly or were exogenously introduced. In human cancer cells with mutations in both PIK3CA and KRAS, genetic ablation of mutant KRAS reinstated response to the drug. Consistent with these data, PIK3CA mutant cells, but not KRAS mutant cells, displayed everolimus-sensitive translation. Importantly, in a cohort of metastatic cancer patients, the presence of oncogenic KRAS mutations was associated with lack of benefit after everolimus therapy. Thus, our results demonstrate that alterations in the KRAS and PIK3CA genes may represent biomarkers to optimize treatment of patients with mTOR inhibitors.


PLOS ONE | 2009

Multi-Determinants Analysis of Molecular Alterations for Predicting Clinical Benefit to EGFR-Targeted Monoclonal Antibodies in Colorectal Cancer

Andrea Sartore-Bianchi; Federica Di Nicolantonio; Michele Nichelatti; Francesca Molinari; Sara De Dosso; Piercarlo Saletti; Miriam Martini; Tiziana Cipani; Giovanna Marrapese; Luca Mazzucchelli; Simona Lamba; Silvio Veronese; Milo Frattini; Alberto Bardelli; Salvatore Siena

Background KRAS mutations occur in 35–45% of metastatic colorectal cancers (mCRC) and preclude responsiveness to EGFR-targeted therapy with cetuximab or panitumumab. However, less than 20% patients displaying wild-type KRAS tumors achieve objective response. Alterations in other effectors downstream of the EGFR, such as BRAF, and deregulation of the PIK3CA/PTEN pathway have independently been found to give rise to resistance. We present a comprehensive analysis of KRAS, BRAF, PIK3CA mutations, and PTEN expression in mCRC patients treated with cetuximab or panitumumab, with the aim of clarifying the relative contribution of these molecular alterations to resistance. Methodology/Principal Findings We retrospectively analyzed objective tumor response, progression-free (PFS) and overall survival (OS) together with the mutational status of KRAS, BRAF, PIK3CA and expression of PTEN in 132 tumors from cetuximab or panitumumab treated mCRC patients. Among the 106 non-responsive patients, 74 (70%) had tumors with at least one molecular alteration in the four markers. The probability of response was 51% (22/43) among patients with no alterations, 4% (2/47) among patients with 1 alteration, and 0% (0/24) for patients with ≥2 alterations (p<0.0001). Accordingly, PFS and OS were increasingly worse for patients with tumors harboring none, 1, or ≥2 molecular alteration(s) (p<0.001). Conclusions/Significance When expression of PTEN and mutations of KRAS, BRAF and PIK3CA are concomitantly ascertained, up to 70% of mCRC patients unlikely to respond to anti-EGFR therapies can be identified. We propose to define as ‘quadruple negative’, the CRCs lacking alterations in KRAS, BRAF, PTEN and PIK3CA. Comprehensive molecular dissection of the EGFR signaling pathways should be considered to select mCRC patients for cetuximab- or panitumumab-based therapies.


Clinical Cancer Research | 2011

Increased Detection Sensitivity for KRAS Mutations Enhances the Prediction of Anti-EGFR Monoclonal Antibody Resistance in Metastatic Colorectal Cancer

Francesca Molinari; Lara Felicioni; Michela Buscarino; Sara De Dosso; Fiamma Buttitta; Sara Malatesta; Alessandra Movilia; Marco Luoni; Renzo Boldorini; Oscar Alabiso; Salvatore Girlando; B. Soini; Alessandra Spitale; Federica Di Nicolantonio; Piercarlo Saletti; Stefano Crippa; Luca Mazzucchelli; Antonio Marchetti; Alberto Bardelli; Milo Frattini

Purpose:KRAS mutations represent the main cause of resistance to anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (MoAbs) in metastatic colorectal cancer (mCRC). We evaluated whether highly sensitive methods for KRAS investigation improve the accuracy of predictions of anti-EGFR MoAbs efficacy. Experimental Design: We retrospectively evaluated objective tumor responses in mCRC patients treated with cetuximab or panitumumab. KRAS codons 12 and 13 were examined by direct sequencing, MALDI-TOF MS, mutant-enriched PCR, and engineered mutant-enriched PCR, which have a sensitivity of 20%, 10%, 0.1%, and 0.1%, respectively. In addition, we analyzed KRAS codon 61, BRAF, and PIK3CA by direct sequencing and PTEN expression by immunohistochemistry. Results: In total, 111 patients were considered. Direct sequencing revealed mutations in codons 12 and 13 of KRAS in 43/111 patients (39%) and BRAF mutations in 9/111 (8%), with almost all of these occurring in nonresponder patients. Using highly sensitive methods, we identified up to 13 additional KRAS mutations compared with direct sequencing, all occurring in nonresponders. By analyzing PIK3CA and PTEN, we found that of these 13 patients, 7 did not show any additional alteration in the PI3K pathway. Conclusions: The application of highly sensitive methods for the detection of KRAS mutations significantly improves the identification of mCRC patients resistant to anti-EGFR MoAbs. Clin Cancer Res; 17(14); 4901–14. ©2011 AACR.


International Journal of Cancer | 2010

Combined analysis of specific KRAS mutation, BRAF and microsatellite instability identifies prognostic subgroups of sporadic and hereditary colorectal cancer

Inti Zlobec; Michal Kovac; Priska Erzberger; Francesca Molinari; Michel P. Bihl; Alexander Rufle; Anja Foerster; Milo Frattini; Luigi Terracciano; Karl Heinimann; Alessandro Lugli

Confounding effects of specific KRAS gene alterations on colorectal cancer (CRC) prognosis stratified by microsatellite instability (MSI) and BRAFV600E have not yet been investigated. The aim of our study was to evaluate the combined effects of MSI, BRAFV600E and specific KRAS mutation (Gly → Asp; G12D, Gly → Asp, G13D; Gly → Val; G12V) on prognosis in 404 sporadic and 94 hereditary CRC patients. MSI status was determined according to the Bethesda guidelines. Mutational status of KRAS and BRAFV600E was assessed by direct DNA sequencing. In sporadic CRC, KRAS G12D mutations had a negative prognostic effect compared to G13D and wild‐type cancers (p = 0.038). With MSI, specific KRAS and BRAFV600E mutations, 3 distinct prognostic subgroups were observed in univariate (p = 0.006) and multivariable (p = 0.051) analysis: patients with (i) KRAS mutation G12D, G12V or BRAFV600E mutation, (ii) KRAS/BRAFV600E wild‐type or KRAS G13D mutations in MSS/MSI‐L and (iii) MSI‐H and KRAS G13D mutations. Moreover, none of the sporadic MSI‐H or hereditary patients with KRAS G13 mutations had a fatal outcome. Specific KRAS mutation is an informative prognostic factor in both sporadic and hereditary CRC and applied in an algorithm with BRAFV600E and MSI may identify sporadic CRC patients with poor clinical outcome.


Frontiers in Oncology | 2014

Functions and Regulation of the PTEN Gene in Colorectal Cancer

Francesca Molinari; Milo Frattini

Phosphatase and TENsin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene located at chromosome 10q23.31, encoding for a 403-amino acid protein that possesses both lipid and protein phosphatase activities. The main function of PTEN is to block the PI3K pathway by dephosphorylating phosphatidylinositol (PI) 3,4,5-triphosphate to PI-4,5-bisphosphate thus counteracting PI3K function. PTEN inactivation is a frequent event in many cancer types and can occur through various genetic alterations including point mutations, large chromosomal deletions, and epigenetic mechanisms. In colorectal cancer (CRC) PTEN is altered through mixed genetic/epigenetic mechanisms (typically: mutations and promoter hypermethylation or 10q23 LOH and promoter hypermethylation), which lead to the biallelic inactivation of the protein in 20–30% of cases. The role of PTEN as a prognostic and predictive factor in CRC has been addressed by relatively few works. This review is focused on the report and on the discussion of the studies investigating these aspects. Overall, at the moment, there are conflicting results and, therefore it has not been clarified whether PTEN might play a prognostic role in CRC. The same is valid also for the predictive role, leading to the fact that PTEN evaluation cannot be used in routinely diagnosis for the early identification of patients who might be addressed to the treatment with EGFR-targeted therapies, at odds with other genetic alterations belonging to EGFR-downstream pathways. The reason of discordant results may be attributable to several issues: (1) the size of the analyzed cohort, (2) patients inclusion criteria, (3) the methods of assessing PTEN alteration. In particular, there are no standardized methods to evaluate this marker, especially for immunohistochemistry, a technique suffering of intra and inter-observer variability due to the semi-quantitative character of such an analysis. In conclusion, much work, especially in large and homogeneous cohorts of cases from different laboratories, has to be done before the establishment of PTEN as prognostic or predictive marker in CRC.


Histology and Histopathology | 2012

Molecular characterization of EGFR and EGFR-downstream pathways in triple negative breast carcinomas with basal like features

Martin; Botta F; Elena Zanellato; Francesca Molinari; Stefano Crippa; Luca Mazzucchelli; Milo Frattini

AIMS Triple negative breast cancer with basal like features (TN-BCBL) do not benefit from hormonal and anti-HER2 therapies. As a considerable fraction of TN-BCBLs shows EGFR deregulation, EGFR-targeted therapies have been proposed as an option. The characterization of EGFR and EGFR-downstream members may therefore provide important predictive information. METHODS AND RESULTS Based on morphological and immunophenotypic features, we identified 38 TN-BCBLs that were subsequently investigated for alterations in EGFR signaling pathways. EGFR and PTEN protein levels were studied by immunohistochemistry, EGFR gene status by FISH, EGFR, H-Ras, K-Ras, N-Ras, BRAF and PIK3CA gene mutations by direct sequencing. EGFR overexpression and loss of PTEN expression characterized the majority of TN-BCBLs (76% and 74% of patients, respectively). EGFR gene copy number gain (FISH+) was identified in 51% of analyzable patients. PIK3CA gene mutations were detected in three cases (8%), whereas EGFR, H-Ras, K-Ras, N-Ras and BRAF genes showed no mutations. Overall, out of 17 patients classified as FISH+, 12 cases (70%) showed a concomitant alteration in PI3K/PTEN pathway. CONCLUSIONS These results provide evidence that the efficacy of anti-EGFR drugs in TN-BCBL patients could be impaired by frequent alterations in the PI3K/PTEN axis, and suggest that TN-BCBLs could benefit from tailored treatments against this axis.


British Journal of Cancer | 2010

Prognostic and predictive value of TOPK stratified by KRAS and BRAF gene alterations in sporadic, hereditary and metastatic colorectal cancer patients

I Zlobec; Francesca Molinari; M Kovac; M P Bihl; H J Altermatt; J Diebold; H Frick; M Germer; M Horcic; M Montani; G Singer; H Yurtsever; A Zettl; Luigi Terracciano; L Mazzucchelli; P Saletti; Milo Frattini; Karl Heinimann; Alessandro Lugli

Background:Our aim was to investigate the prognostic and predictive value of the oncogenic MAPKK-like protein T-cell-originated protein kinase (TOPK) stratified by KRAS and BRAF mutations in patients with sporadic, hereditary and metastatic colorectal cancer (CRC) treated with anti-EGFR therapy.Methods:Immunohistochemistry (IHC) for TOPK was performed on four study groups. Group 1 included two subgroups of 543 and 501 sporadic CRC patients used to test the reliability of TOPK expression by IHC. In Group 2, representing an additional 222 sporadic CRCs, the prognostic effect of TOPK stratified by KRAS and BRAF was assessed. The prognostic effect of TOPK was further analysed in Group 3, representing 71 hereditary Lynch syndrome-associated CRC patients. In Group 4, the predictive and prognostic value of TOPK was analysed on 45 metastatic patients treated with cetuximab or panitumumab stratified by KRAS and BRAF gene status.Results:In both sporadic CRC subgroups (Group 1), associations of diffuse TOPK expression with clinicopathological features were reproducible. Molecular analysis of sporadic CRCs in Group 2 showed that diffuse TOPK expression was associated with KRAS and BRAF mutations (p<0.001) and with poor outcome in patients with either mutation in univariate and multivariate analysis (P=0.017). In hereditary patients (Group 3), diffuse TOPK was linked to advanced pT stage. In metastatic patients treated with anti-EGFR therapy (Group 4), diffuse TOPK expression was linked to dismal outcome despite objective response to treatment (P=0.01).Conclusions:TOPK expression is an unfavourable prognostic indicator in sporadic patients with KRAS or BRAF mutations and also in patients with metastatic disease experiencing a response to anti-EGFR therapies. The inhibition of TOPK, which could benefit 30–40% of CRC patients, may represent a new avenue of investigation for targeted therapy.

Collaboration


Dive into the Francesca Molinari's collaboration.

Top Co-Authors

Avatar

Milo Frattini

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefano Crippa

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salvatore Siena

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge