Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Mossa is active.

Publication


Featured researches published by Francesca Mossa.


Journal of Dairy Science | 2012

Low numbers of ovarian follicles ≥3 mm in diameter are associated with low fertility in dairy cows

Francesca Mossa; S.W. Walsh; S.T. Butler; D.P. Berry; F. Carter; P. Lonergan; George W. Smith; James J. Ireland; A.C.O. Evans

The total number of ovarian follicles ≥ 3mm in diameter (antral follicle count, AFC) during follicular waves varies among cattle of similar age, but AFC is highly repeatable within individuals. We hypothesized that lower AFC could be associated with reduced fertility in cattle. The AFC was assessed by ultrasonography for 2 d consecutively during the first wave of follicular growth of the estrous cycle, 4.6±1.43 d (mean ± SD) after estrus, in 306 Holstein-Friesian dairy cows approximately 70 d postpartum. Cows were classified into 3 groups based on AFC: low (AFC ≤15), intermediate (AFC=16 to 24), and high (AFC ≥25). During the cycle in which AFC was assessed and in subsequent cycles, cows were artificially inseminated (AI) following detection of estrus, and pregnancy status was assessed using ultrasonography. Cows with high AFC had 3.34 times greater odds of being pregnant at the end of the breeding season compared with cows with low AFC; the odds of a successful pregnancy at first service were 1.75 times greater in the intermediate compared with the low group. The predicted probability of a successful pregnancy by the end of the breeding period (length of breeding season was 86±16.3 d) was 94, 88, and 84% for the high, intermediate, and low AFC groups, respectively. No difference was evident among groups in 21-d submission rate (proportion of all cows detected in estrus and submitted for AI in the first 21 d of the breeding season), but the interval from calving to conception was shorter in the high (109.5±5.1 d) versus low (117.1±4 d) group, and animals with intermediate AFC received fewer services during the breeding season (2.3±0.1) compared with animals with low AFC (2.7±0.1). Lactating cows with ≤15 ovarian follicles have lower reproductive performance compared with cows with higher numbers of follicles, but the existence of a positive association between high numbers of ovarian follicles and fertility is yet to be established.


Biology of Reproduction | 2009

Variation in the Ovarian Reserve Is Linked to Alterations in Intrafollicular Estradiol Production and Ovarian Biomarkers of Follicular Differentiation and Oocyte Quality in Cattle

James J. Ireland; A.E. Zielak-Steciwko; Fermin Jimenez-Krassel; Joseph K. Folger; Anilkumar Bettegowda; D. Scheetz; S.W. Walsh; Francesca Mossa; Philip G. Knight; George W. Smith; P. Lonergan; A.C.O. Evans

Abstract The mechanisms whereby the high variation in numbers of morphologically healthy oocytes and follicles in ovaries (ovarian reserve) may have an impact onovarian function, oocyte quality, and fertility are poorly understood. The objective was to determine whether previously validated biomarkers for follicular differentiation and function, as well as oocyte quality differed between cattle with low versus a high antral follicle count (AFC). Ovaries were removed (n = 5 per group) near the beginning of the nonovulatory follicular wave, before follicles could be identified via ultrasonography as being dominant, from heifers with high versus a low AFC. The F1, F2, and F3 follicles were dissected and diameters determined. Follicular fluid and thecal, granulosal, and cumulus cells and the oocyte were isolated and subjected to biomarker analyses. Although the size and numerous biomarkers of differentiation, such as mRNAs for the gonadotropin receptors, were similar, intrafollicular concentrations of estradiol and the abundance of mRNAs for CYP19A1 in granulosal cells and ESR1, ESR2, and CTSB in cumulus cells were greater, whereas mRNAs for AMH in granulosal cells and TBC1D1 in thecal cells were lower for animals with low versus a high AFC during follicle waves. Hence, variation in the ovarian reserve may have an impact on follicular function and oocyte quality via alterations in intrafollicular estradiol production and expression of key genes involved in follicle-stimulating hormone action (AMH) and estradiol (CYP19A1) production by granulosal cells, function and survival of thecal cells (TBC1D1), responsiveness of cumulus cells to estradiol (ESR1, ESR2), and cumulus cell determinants of oocyte quality (CTSB).


Biology of Reproduction | 2013

Maternal Undernutrition in Cows Impairs Ovarian and Cardiovascular Systems in Their Offspring

Francesca Mossa; F. Carter; S.W. Walsh; David A. Kenny; George W. Smith; J.L.H. Ireland; Thomas B. Hildebrandt; P. Lonergan; James J. Ireland; A.C.O. Evans

ABSTRACT Severe prenatal undernutrition is usually associated with low birth weights in offspring and disorders including hypertension, obesity, and diabetes. Whether alterations in maternal nutrition insufficient to impair birth weight or prenatal growth impact the cardiovascular, stress, or metabolic systems is unknown. In addition, little is known about the effects of maternal dietary restriction on development of the reproductive system in mammals. Here, we use the bovine model, which has a gestational length and birth rate similar to humans, to show that offspring from nutritionally restricted dams (during the first trimester) were born with identical birth weights and had similar postnatal growth rates (to 95 wk of age), puberty, glucose metabolism, and responses to stress compared to offspring from control mothers. However, an increase in maternal testosterone concentrations was detected during dietary restriction, and these dams had offspring with a diminished ovarian reserve (as assessed by a reduction in antral follicle count, reduced concentrations of anti-Müllerian hormone, and increased follicle-stimulating hormone concentrations), enlarged aorta, and increased arterial blood pressure compared with controls. Our study links transient maternal undernutrition and enhanced maternal androgen production with a diminished ovarian reserve as well as potential suboptimal fertility, enlarged aortic trunk size, and enhanced blood pressure independent of alterations in birth weight, postnatal growth, or stress response and glucose tolerance. The implications are that relatively mild transient reductions in maternal nutrition during the first trimester of pregnancy (even those that do not affect gross development) should be avoided to ensure healthy development of reproductive and cardiovascular systems in offspring.


Reproduction in Domestic Animals | 2012

Effects of Maternal Environment During Gestation on Ovarian Folliculogenesis and Consequences for Fertility in Bovine Offspring

A.C.O. Evans; Francesca Mossa; S.W. Walsh; D. Scheetz; Fermin Jimenez-Krassel; J.L.H. Ireland; George W. Smith; James J. Ireland

Mammals such as cattle, swine, sheep and humans are born with a highly variable number of ovarian follicles and oocytes in the ovaries that dwindle during ageing and are never replenished. This variation in the ovarian reserve is reflected in the numbers of antral follicles in the ovaries at all ages after birth. As numbers of follicles in ovaries are determined during gestation, the role of maternal nutrition and health during gestation (at time of ovarian development in their foetuses) has been investigated as factors that may impact oogonia proliferation and thus follicle numbers post-natally. These studies have found that both nutrition and health impact numbers of follicles in their offspring. The idea that numbers of follicles and oocytes in ovaries impact fertility is a long-held belief in reproductive biology. This has recently been tested in cattle, and it has been shown that cows with a relatively high number of antral follicles in ovaries have higher pregnancy rates, shorter calving to conception intervals and fewer artificial inseminations during the breeding season compared with cows with a lower number of follicles, and similarly, heifers with many follicles had higher pregnancy rates than those with fewer follicles. Studies summarized in this review highlight the importance of the maternal environment during gestation in determining the size of the ovarian reserve in their offspring and also the contribution of the ovarian reserve to subsequent fertility in cattle.


Reproduction | 2010

Evidence that high variation in antral follicle count during follicular waves is linked to alterations in ovarian androgen production in cattle

Francesca Mossa; Fermin Jimenez-Krassel; Joseph K. Folger; J.L.H. Ireland; George W. Smith; P. Lonergan; A.C.O. Evans; James J. Ireland

Androgens have an important role in ovarian follicular growth and function, but circulating androgen concentrations are also associated with ovarian dysfunction, cardiovascular disease, and metabolic disorders in women. The extent and causes of the variation in androgen production in individuals, however, are unknown. Because thecal cells of follicles synthesize androstenedione and testosterone, variation in production of these androgens is hypothesized to be directly related to the inherently high variation in number of healthy growing follicles in ovaries of individuals. To test this hypothesis, we determined whether thecal CYP17A1 mRNA (codes for a cytochrome P450 enzyme involved in androgen synthesis), LH-induced thecal androstenedione production, androstenedione concentrations in follicular fluid, and circulating testosterone concentrations were lower in cattle with relatively low versus high number of follicles growing during follicular waves and whether ovariectomy reduced serum testosterone concentrations. Results demonstrated that cattle with a low follicle number had lower (P<0.05) abundance of CYP17A1 mRNA in thecal cells, reduced (P<0.01) capacity of thecal cells to produce androstenedione in response to LH, lower (P<0.01) androstenedione concentrations in ovulatory follicles, and lower (P<0.02) circulating testosterone concentrations during estrous cycles compared with animals with high follicle number. Also, serum testosterone in cattle with low or high follicle number was reduced by 63 and 70%, respectively, following ovariectomy. In conclusion, circulating androgen concentrations are lower in cattle with low versus high number of follicles growing during follicular waves, possibly because of a reduced responsiveness of thecal cells to LH.


Reproduction, Fertility and Development | 2010

Inherent capacity of the pituitary gland to produce gonadotropins is not influenced by the number of ovarian follicles >= 3 mm in diameter in cattle

Francesca Mossa; Fermin Jimenez-Krassel; S.W. Walsh; D.P. Berry; S.T. Butler; Joseph K. Folger; George W. Smith; J.L.H. Ireland; P. Lonergan; James J. Ireland; A.C.O. Evans

We hypothesised that higher serum FSH concentrations in cattle with low v. high follicle numbers during follicular waves are caused by a different capacity of the pituitary gland to produce gonadotropins. Dairy cows with high (> or = 30; n = 5) and low (< or = 15; n = 5) follicle numbers were selected and serum concentrations of oestradiol and FSH during an oestrous cycle were measured. Cows were ovariectomised at oestrus and bled frequently up to 8 days after ovariectomy. After 33 days, cows were injected with gonadotropin-releasing hormone (GnRH) and bled intensively up to 8 h after GnRH injection. One day later, animals were injected with follicular fluid (FF) from bovine follicles and were bled intensively up to 2 days after the first injection. Serum concentrations of FSH and LH were measured. After 2 days, cows were killed and their pituitary glands collected. Prior to ovariectomy, serum oestradiol concentrations were similar between groups, whereas FSH concentrations were higher in cattle with low v. high numbers of follicles. No differences were detected in serum gonadotropin concentrations after ovariectomy, GnRH injection or FF challenge between groups. The results indicate that the inherent capacity of the pituitary gland to secrete gonadotropins does not differ between cattle with high v. low numbers of follicles during follicular waves.


Journal of Dairy Science | 2015

Concentration of anti-Müllerian hormone in dairy heifers is positively associated with productive herd life.

Fermin Jimenez-Krassel; Danielle M. Scheetz; L. Neuder; J.L.H. Ireland; J.R. Pursley; George W. Smith; Robert J. Tempelman; T.A. Ferris; W.E. Roudebush; Francesca Mossa; P. Lonergan; A.C.O. Evans; James J. Ireland

Reliable biomarkers predictive of productive herd life (time in herd after birth of first calf) have heretofore not been discovered in dairy cattle. However, circulating concentrations of anti-Müllerian hormone (AMH) are positively associated with number of follicles or antral follicle count (AFC), ovarian function, and fertility, and approximately 25% of cows have a relatively low AFC and low AMH concentrations. The present study tested the hypothesis that heifers with the lowest AMH concentrations have suboptimal fertility and are removed from a herd for poor reproductive performance at a greater rate, and therefore have a shorter productive herd life compared with age-matched herdmates with higher AMH. To test this hypothesis, 11- to 15-mo-old Holstein heifers (n=281) were subjected to a single measurement of AMH. All heifers not removed from the herd had the opportunity to complete 2 lactations and start their third lactation after calving. During this time, performance and health parameters for each individual were recorded daily by herd managers. Results showed that the quartile of heifers with the lowest AMH concentration also had, on average, a shorter productive herd life (by 196 d), a reduced survival rate after birth of the first calf, the lowest level of milk production (first lactation), the lowest total percentage of cows pregnant (across all lactations), the highest culling rates (first and second lactations and overall), and the highest culling rate for poor reproduction (first lactation) compared with age-matched herdmates with higher AMH. We concluded that a single determination of AMH concentration in young adult dairy heifers may be a simple diagnostic method to predict herd longevity, and AMH may be a useful phenotypic marker to improve longevity of dairy cows.


Journal of Dairy Science | 2014

Heritability and impact of environmental effects during pregnancy on antral follicle count in cattle

Siobhan W. Walsh; Francesca Mossa; S.T. Butler; D.P. Berry; D. Scheetz; Fermin Jimenez-Krassel; Robert J. Tempelman; F. Carter; P. Lonergan; A.C.O. Evans; James J. Ireland

Previous studies have documented that ovarian antral follicle count (AFC) is positively correlated with number of healthy follicles and oocytes in ovaries (ovarian reserve), as well as ovarian function and fertility in cattle. However, environmental factors (e.g., nutrition, steroids) during pregnancy in cattle and sheep can reduce AFC in offspring. The role that genetic and environmental factors play in influencing the variability in AFC and, correspondingly, the size of the ovarian reserve, ovarian function, and fertility, are, however, poorly understood. The present study tests the hypothesis that variability in AFC in offspring is influenced not only by genetic merit but also by the dam age and lactation status (lactating cows vs. nonlactating heifers) and milk production during pregnancy. Antral follicle count was assessed by ultrasonography in 445 Irish Holstein-Friesian dairy cows and 522 US Holstein-Friesian dairy heifers. Heritability estimates for AFC (± standard error) were 0.31 ± 0.14 and 0.25 ± 0.13 in dairy cows and heifers, respectively. Association analysis between both genotypic sire data and phenotypic dam data with AFC in their daughters was performed using regression and generalized linear models. Antral follicle count was negatively associated with genetic merit for milk fat concentration. Also, AFC was greater in offspring of dams that were lactating (n=255) compared with nonlactating dams (n=89) during pregnancy and was positively associated with dam milk fat concentration and milk fat-to-protein ratio. In conclusion, AFC in dairy cattle is a moderately heritable genetic trait affected by age or lactation status and milk quality but not by level of dams milk production during pregnancy.


Reproduction | 2017

Anti-Müllerian Hormone (AMH) and fertility management in agricultural species

Francesca Mossa; Fermin Jimenez-Krassel; Danielle M. Scheetz; Miriam Weber-Nielsen; A.C.O. Evans; James J. Ireland

A reliable, easy to assess marker for fertility in agricultural species would be highly desirable and Anti-Müllerian Hormone (AMH) is a promising candidate. This review summarizes recent findings concerning AMH and its role in fertility management, mainly in cattle. It focuses on (1) alterations in circulating AMH concentrations from birth to puberty and during estrous cycles; (2) correlation of circulating AMH concentrations with ovarian follicle numbers and ovarian reserve; (3) factors that impact circulating AMH concentrations; (4) use of AMH as a predictor of fertility. Circulating AMH concentrations can be easily and reliably measured with a single blood sample in adult cattle because AMH varies minimally during the estrous cycle and is repeatable across multiple cycles. Circulating AMH concentrations are positively associated with several measures of fertility. Dairy heifers with low compared with higher AMH concentrations subsequently had lower pregnancy rates, higher probability of being culled after birth of their first calf and shorter herd longevity. Also, AMH is predictive of response to superovulation in cattle and sheep. Several factors contribute to the variability in AMH concentrations among individuals; for example, beef cattle have higher AMH than dairy cattle. Nutritional imbalances, disease and endocrine disruptors during fetal life may negatively program the size of the ovarian reserve and consequently serum AMH concentrations and potential fertility in adulthood. We conclude that AMH may be a predictor of fertility and herd longevity in cattle, whereas in sheep and other farm species, the potential association between AMH and reproductive performance remains largely unexplored.Free Italian abstract: An Italian translation of this abstract is freely available at http://www.reproduction-online.org/content/154/1/R1/suppl/DC1.


Archive | 2014

Anti-Müllerian Hormone (AMH)

Francesca Mossa; James J. Ireland

Anti-mullerian hormone (AMH) is a glycoprotein produced by granulosa cells of healthy, growing ovarian follicles in females and its receptors are expressed in oocytes, granulosa, and theca cells. AMH known functions are (1) inhibition of primordial follicular growth from the ovarian reserve, avoiding its premature exhaustion and (2) modulation of follicular development. AMH circulating concentrations are relatively constant during the menstrual/estrous cycle and are repeatable across multiple cycles in women and cattle, thus AMH concentrations can be reliably measured with a single blood sample. Because AMH correlates with the size of the ovarian reserve, it may be used to predict fertility, reproductive longevity and response to ART.

Collaboration


Dive into the Francesca Mossa's collaboration.

Top Co-Authors

Avatar

A.C.O. Evans

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Lonergan

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George W. Smith

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge