Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Pederzoli is active.

Publication


Featured researches published by Francesca Pederzoli.


Tissue barriers | 2016

Nanoparticle transport across the blood brain barrier.

Andreas M. Grabrucker; Barbara Ruozi; Daniela Belletti; Francesca Pederzoli; Flavio Forni; Maria Angela Vandelli; Giovanni Tosi

ABSTRACT While the role of the blood-brain barrier (BBB) is increasingly recognized in the (development of treatments targeting neurodegenerative disorders, to date, few strategies exist that enable drug delivery of non-BBB crossing molecules directly to their site of action, the brain. However, the recent advent of Nanomedicines may provide a potent tool to implement CNS targeted delivery of active compounds. Approaches for BBB crossing are deeply investigated in relation to the pathology: among the main important diseases of the CNS, this review focuses on the application of nanomedicines to neurodegenerative disorders (Alzheimer, Parkinson and Huntingtons Disease) and to other brain pathologies as epilepsy, infectious diseases, multiple sclerosis, lysosomal storage disorders, strokes.


Pharmaceutics | 2015

Endocytosis of Nanomedicines: The Case of Glycopeptide Engineered PLGA Nanoparticles

Antonietta Vilella; Barbara Ruozi; Daniela Belletti; Francesca Pederzoli; Marianna Galliani; Valentina Semeghini; Flavio Forni; Michele Zoli; Maria Angela Vandelli; Giovanni Tosi

The success of nanomedicine as a new strategy for drug delivery and targeting prompted the interest in developing approaches toward basic and clinical neuroscience. Despite enormous advances on brain research, central nervous system (CNS) disorders remain the world’s leading cause of disability, in part due to the inability of the majority of drugs to reach the brain parenchyma. Many attempts to use nanomedicines as CNS drug delivery systems (DDS) were made; among the various non-invasive approaches, nanoparticulate carriers and, particularly, polymeric nanoparticles (NPs) seem to be the most interesting strategies. In particular, the ability of poly-lactide-co-glycolide NPs (PLGA-NPs) specifically engineered with a glycopeptide (g7), conferring to NPs’ ability to cross the blood brain barrier (BBB) in rodents at a concentration of up to 10% of the injected dose, was demonstrated in previous studies using different routes of administrations. Most of the evidence on NP uptake mechanisms reported in the literature about intracellular pathways and processes of cell entry is based on in vitro studies. Therefore, beside the particular attention devoted to increasing the knowledge of the rate of in vivo BBB crossing of nanocarriers, the subsequent exocytosis in the brain compartments, their fate and trafficking in the brain surely represent major topics in this field.


Glycobiology | 2010

Effect of 6 years of enzyme replacement therapy on plasma and urine glycosaminoglycans in attenuated MPS I patients

Giovanni V. Coppa; Dania Buzzega; Lucia Zampini; Francesca Maccari; Tiziana Galeazzi; Francesca Pederzoli; Orazio Gabrielli; Nicola Volpi

Enzyme-replacement therapy (ERT) is a new option for the clinical management of MPS I. However, no detailed data are available on the structural characterization of glycosaminoglycans (GAGs) in the urine and plasma of patients before ERT and during treatment regimens. Before ERT and over a two-week period of enzyme infusion, GAGs in urine and plasma were analyzed in two patients with the Hurler-Scheie form of MPS I subjected to ERT for 6 years. In both patients before ERT, high amounts of a GAG were found in the urine, composed in particular of a high molecular mass polymer (approximately 13,000-13,500) consisting of approximately 75-78% iduronic acid and rich in 4-sulfated disaccharides (DeltaDi4s) and attributable to DS. Furthermore, a high amount of this GAG was directly detected in the blood. Plasma GAGs in MPS I patients subjected to ERT were found to be comparable to those of normal subjects with the absence of heparan sulfate and of DS. On the contrary, a polysaccharide possessing a high molecular mass, approximately 11,500-12,000, lower than the polymer extracted before ERT but slightly higher than the controls (approximately 11,000), was found in the urine of both patients. This macromolecule was characterized as a mixture of DS/chondroitin sulfate based on the high percentage of 4-sulfated disaccharide (4s/6s ratio of approximately 3.1) and iduronic acid ( approximately 60%). These results are indicative of the incapacity of ERT at the standard dose to definitively eliminate DS from the urine. Finally, a variable effect of ERT depending on each administration was also observed.


International Journal of Pharmaceutics | 2017

Novel Curcumin loaded nanoparticles engineered for Blood-Brain Barrier crossing and able to disrupt Abeta aggregates

Ruozi Barbara; Daniela Belletti; Francesca Pederzoli; Martina Masoni; Johannes Keller; Antonio Ballestrazzi; Maria Angela Vandelli; Giovanni Tosi; Andreas M. Grabrucker

The formation of extracellular aggregates built up by deposits of β-amyloid (Aβ) is a hallmark of Alzheimers disease (AD). Curcumin has been reported to display anti-amyloidogenic activity, not only by inhibiting the formation of new Aβ aggregates, but also by disaggregating existing ones. However, the uptake of Curcumin into the brain is severely restricted by its low ability to cross the blood-brain barrier (BBB). Therefore, novel strategies for a targeted delivery of Curcumin into the brain are highly desired. Here, we encapsulated Curcumin as active ingredient in PLGA (polylactide-co-glycolic-acid) nanoparticles (NPs), modified with g7 ligand for BBB crossing. We performed in depth analyses of possible toxicity of these NPs, uptake, and, foremost, their ability to influence Aβ pathology in vitro using primary hippocampal cell cultures. Our results show no apparent toxicity of the formulated NPs, but a significant decrease of Aβ aggregates in response to Curcumin loaded NPs. We thus conclude that brain delivery of Curcumin using BBB crossing NPs is a promising future approach in the treatment of AD.


European Journal of Pharmaceutics and Biopharmaceutics | 2016

PEGylated siRNA lipoplexes for silencing of BLIMP-1 in Primary Effusion Lymphoma: In vitro evidences of antitumoral activity

Daniela Belletti; Giovanni Tosi; Flavio Forni; Ivana Lagreca; Patrizia Barozzi; Francesca Pederzoli; Maria Angela Vandelli; Giovanni Riva; Mario Luppi; Barbara Ruozi

Silencing of the B lymphocyte-induced maturation protein 1 (Blimp-1), a pivotal transcriptional regulator during terminal differentiation of B cells into plasma cells with siRNAs is under investigation as novel therapeutic approach in Primary Effusion Lymphoma (PEL), a HHV-8 related and aggressive B cell Lymphoma currently lacking of an efficacious therapeutic approach. The clinical application of small interfering RNA (siRNA) in cancer therapy is limited by the lack of an efficient systemic siRNA delivery system. In this study we aim to develop pegylated siRNA lipoplexes formed using the cationic lipid DOTAP and DSPE-PEG2000, capable to effectively stabilize anti-Blimp-1 siRNA and suitable for systemic administration. Two types of pegylated lipoplexes using a classic (C-PEG Lipoplexes) or a post-pegylation method (P-PEG-Lipoplexes) were formulated and compared in their physicochemical properties (size, zeta potential, morphology and structure) and efficiency on PEL cell lines. A stable siRNAs protection was obtained with post pegylation approach (2% molar of DSPE-PEG2000 with respect to lipid) resulting in structures with diameters of 300 nm and a complexation efficiency higher that 80% (0.08 nmol/10 nmol of lipid). In vitro studies on PEL cell lines suggested that empty liposomes were characterized by a low cell toxicity also after PEG modification (cell viability and cell density over 85% after treatment with 10 μM of lipid). We demonstrated that P-PEG-Lipoplexes were able to significantly reduce the levels of BLIMP-1 protein leading to reduction of viability (less that 15% after transfection with 100 nM of complexed siRNAs) and activation of apoptosis. In vitro efficiency encourages us to further test the in vivo potential of P-PEG-Lipoplexes in PEL therapy.


Expert Opinion on Drug Delivery | 2017

Protein cage nanostructure as drug delivery system: magnifying glass on apoferritin

Daniela Belletti; Francesca Pederzoli; Flavio Forni; Maria Angela Vandelli; Giovanni Tosi; Barbara Ruozi

ABSTRACT Introduction: New frontiers in nanomedicine are moving towards the research of new biomaterials. Apoferritin (APO), is a uniform regular self-assemblies nano-sized protein with excellent biocompatibility and a unique structure that affords it the ability to stabilize small active molecules in its inner core. Areas covered: APO can be loaded by applying a passive process (mainly used for ions and metals) or by a unique formulative approach based on disassemby/reassembly process. In this article, we aim to organize the experimental evidence provided by a number of studies on the loading, release and targeting. Attention is initially focused on the most investigated antineoplastic drug and contrast agents up to the most recent application in gene therapy. Expert opinion: Various preclinical studies have demonstrated that APO improved the potency and selectivity of some chemotherapeutics. However, in order to translate the use of APO into therapy, some issues must be solved, especially regarding the reproducibility of the loading protocol used, the optimization of nanocarrier characterization, detailed understanding of the final structure of loaded APO, and the real mechanism and timing of drug release.


Molecular Pharmaceutics | 2015

Exploiting Bacterial Pathways for BBB Crossing with PLGA Nanoparticles Modified with a Mutated Form of Diphtheria Toxin (CRM197): In Vivo Experiments

Giovanni Tosi; Antonietta Vilella; P. Veratti; Daniela Belletti; Francesca Pederzoli; Barbara Ruozi; Maria Angela Vandelli; Michele Zoli; Flavio Forni

Drugs can be targeted to the brain using polymeric nanoparticles (NPs) engineered on their surface with ligands able to allow crossing of the blood-brain barrier (BBB). This article aims to investigate the BBB crossing efficiency of polymeric poly lactide-co-glycolide (PLGA) NPs modified with a mutated form of diphtheria toxin (CRM197) in comparison with the results previously obtained using PLGA NPs modified with a glycopeptide (g7-NPs). Different kinds of NPs, covalently coupled PLGA with different fluorescent probes (DY405, rhodamine-B base and DY675) and different ligands (g7 and CRM197) were tested in vivo to assess their behavior and trafficking. The results highlighted the possibility to distinguish the different kinds of simultaneously administered NPs and to emphasize that CRM-197 modified NPs and g7-NPs can cross the BBB at a similar extent. The analysis of BBB crossing and of the neuronal tropism of CRM197 modified NPs, along with their BBB crossing pathways were also developed. In vivo pharmacological studies performed on CRM197 engineered NPs, loaded with loperamide, underlined their ability as drug carriers to the CNS.


Clinical Chemistry and Laboratory Medicine | 2010

Comparison of cetylpyridinium chloride and cetyltrimethylammonium bromide extractive procedures for quantification and characterization of human urinary glycosaminoglycans.

Dania Buzzega; Francesca Pederzoli; Francesca Maccari; Diler Aslan; Mehmet Türk; Nicola Volpi

Abstract Background: Glycosaminoglycans (GAGs) are natural complex polysaccharides that are important in several pathological processes. Urinary GAGs have long been investigated for their possible modifications in many pathological conditions. In some cases, they have been found to have diagnostic utility. As a result, the measurement of GAGs in urine is gradually gaining importance. Cetylpyridinium chloride (CPC) and cetyltrimethylammonium bromide (CETAB) are generally used to extract urinary GAGs prior to analysis. In this study, we evaluated the extraction of human urinary GAGs using CPC in comparison with CETAB. Methods: Extracted urinary GAGs were qualitatively and quantitatively analyzed by agarose-gel electrophoresis in the presence of sequential staining and densitometric scanning. This procedure was able to give more reproducible and reliable results for urinary GAGs, and high performance liquid chromatography (HPLC) was used for the evaluation of chondroitin sulfate (CS) disaccharides. Results: Differences were observed between CPC and CETAB extract protocols. The absolute amount of CS evaluated by electrophoresis was found to be similar for the two protocols. However, the heparan sulfate (HS) concentration was calculated to be approximately 3.3 times greater for CPC than CETAB. When calculated in relative percentage, 33.6% HS was determined for CPC and 10.0% for CETAB. These results show a quantitative expression for greater recovery of HS by using CPC protocol than CETAB. No significant differences were found between CS quantified by agarose-gel and HPLC. In addition, no differences were observed for the CS disaccharide composition purified by using CPC or CETAB, and quite similar results were observed for 4s/6s disaccharide ratios and charge density values. Conclusions: Extract procedures for urinary GAGs using CPC or CETAB are able to recover similar amounts of CS quantified by agarose-gel electrophoresis and HPLC. However, CPC yields greater recovery of HS than the CETAB protocol; an increase of approximately 3.3 times as evaluated by electrophoresis. This different capacity of HS extraction between CPC and CETAB should be considered when urinary GAGs of subjects affected by various diseases and related pharmacological treatments are considered, or meta-analysis is performed comparing various studies and trials performed under different experimental conditions. Clin Chem Lab Med 2010;48:1133–9.


International Journal of Pharmaceutics | 2016

EXPLOITING THE VERSATILITY OF CHOLESTEROL IN NANOPARTICLES FORMULATION.

Daniela Belletti; Andreas M. Grabrucker; Francesca Pederzoli; I. Menrath; V. Cappello; Maria Angela Vandelli; Flavio Forni; Giovanni Tosi; Barbara Ruozi

The biocompatibility of polymers, lipids and surfactants used to formulate is crucial for the safe and sustainable development of nanocarriers (nanoparticles, liposomes, micelles, and other nanocarriers). In this study, Cholesterol (Chol), a typical biocompatible component of liposomal systems, was formulated in Chol-based solid nanoparticles (NPs) stabilized by the action of surfactant and without the help of any other formulative component. Parameters as type (Solutol HS 15, cholic acid sodium salt, poly vinyl alcohol and Pluronic-F68), concentration (0.2; 0.5 and 1% w/v) of surfactant and working temperature (r.t. and 45°C) were optimized and all samples characterized in terms of size, zeta potential, composition, thermal behavior and structure. Results demonstrated that only Pluronic-F68 (0.5% w/v) favors the organization of Chol chains in structured NPs with mean diameter less than 400nm. Moreover, we demonstrated the pivotal role of working temperature on surfactant aggregation state/architecture/stability of Chol-based nanoparticles. At room temperature, Pluronic-F68 exists in solution as individual coils. In this condition, nanoprecipitation of Chol formed the less stable NPs with a 14±3% (w/w) of Pluronic-F68 prevalently on surface (NP-Chol/0.5). On the contrary, working near the critical micelle temperature (CMT) of surfactant (45°C), Chol precipitates with Pluronic-F68 (9±5% w/w) in a compact stable matricial structure (NP-Chol/0.5-45). In vitro studies highlight the low toxicity and the affinity of NP-Chol/0.5-45 for neuronal cells suggesting their potential applicability in pathologies with a demonstrated alteration of neuronal plasticity and synaptic communication (i.e. Huntingtons disease).


Expert Opinion on Drug Delivery | 2016

Apoferritin nanocage as drug reservoir: is it a reliable drug delivery system?

Giovanni Tosi; Daniela Belletti; Francesca Pederzoli; Barbara Ruozi

Apoferritin nanocage as drug reservoir: is it a reliable drug delivery system? Giovanni Tosi, Daniela Belletti, Francesca Pederzoli & Barbara Ruozi To cite this article: Giovanni Tosi, Daniela Belletti, Francesca Pederzoli & Barbara Ruozi (2016) Apoferritin nanocage as drug reservoir: is it a reliable drug delivery system?, Expert Opinion on Drug Delivery, 13:10, 1341-1343, DOI: 10.1080/17425247.2016.1224848 To link to this article: https://doi.org/10.1080/17425247.2016.1224848

Collaboration


Dive into the Francesca Pederzoli's collaboration.

Top Co-Authors

Avatar

Giovanni Tosi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Barbara Ruozi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Daniela Belletti

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Flavio Forni

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Maria Angela Vandelli

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Veratti

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Antonietta Vilella

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Antonio Ballestrazzi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Dania Buzzega

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge