Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Pilolli is active.

Publication


Featured researches published by Francesca Pilolli.


The FASEB Journal | 2010

Melatonin signaling and cell protection function

Francesca Luchetti; Barbara Canonico; Michele Betti; Marcella Arcangeletti; Francesca Pilolli; Marta Piroddi; Laura Canesi; Stefano Papa; Francesco Galli

Besides its well‐known regulatory role on circadian rhythm, the pineal gland hormone melatonin has other biological functions and a distinct metabolism in various cell types and peripheral tissues. In different tissues and organs, melatonin has been described to act as a paracrine and also as an intracrine and autocrine agent with overall homeostatic functions and pleiotropic effects that include cell protection and prosurvival factor. These latter effects, documented in a number of in vitro and in vivo studies, are sustained through both receptor‐dependent and ‐independent mechanisms that control detoxification and stress response genes, thus conferring protection against a number of xenobiotics and endobiotics produced by acute and chronic noxious stimuli. Redox‐sensitive components are included in the cell protection signaling of melatonin and in the resulting transcriptional response that involves the control of NF‐κB, AP‐1, and Nrf2. By these pathways, melatonin stimulates the expression of antioxidant and detoxification genes, acting in turn as a glutathione system enhancer. A further and converging mechanism of cell protection by this indoleamine described in different models seems to lie in the control of damage and signaling function of mitochondria that involves decreased production of reactive oxygen species and activation of the antiapoptotic and redox‐sensitive element Bcl2. Recent evidence suggests that upstream components in this mitochondrial route include the calmodulin pathway with its central role in melatonin signaling and the survival‐promoting component of MAPKs, ERK1/2. In this review article, we will discuss these and other molecular aspects of melatonin signaling relevant to cell protection and survival mechanisms.—Luchetti, F., Canonico, B., Betti, M., Arcangeletti, M., Pilolli, F., Piroddi, M., Canesi, L., Papa, S., Galli, F. Melatonin signaling and cell protection function. FASEB J. 24, 3603–3624 (2010). www.fasebj.org


Biochimica et Biophysica Acta | 2012

Oxidative stress and antioxidant therapy in cystic fibrosis.

Francesco Galli; Andrea Battistoni; Roberto Gambari; Alfonso Pompella; Alessandra Bragonzi; Francesca Pilolli; Luigi Iuliano; Marta Piroddi; Maria Cristina Dechecchi; Giulio Cabrini

Cystic fibrosis is a lethal autosomal recessive condition caused by a defect of the transmembrane conductance regulator gene that has a key role in cell homeostasis. A dysfunctional cystic fibrosis transmembrane conductance regulator impairs the efflux of cell anions such as chloride and bicarbonate, and also that of other solutes such as reduced glutathione. This defect produces an increased viscosity of secretions together with other metabolic defects of epithelia that ultimately promote the obstruction and fibrosis of organs. Recurrent pulmonary infections and respiratory dysfunction are main clinical consequences of these pathogenetic events, followed by pancreatic and liver insufficiency, diabetes, protein-energy malnutrition, etc. This complex comorbidity is associated with the extensive injury of different biomolecular targets by reactive oxygen species, which is the biochemical hallmark of oxidative stress. These biological lesions are particularly pronounced in the lung, in which the extent of oxidative markers parallels that of inflammatory markers between chronic events and acute exacerbations along the progression of the disease. Herein, an abnormal flux of reactive oxygen species is present by the sustained activation of neutrophils and other cystic fibrosis-derived defects in the homeostatic processes of pulmonary epithelia and lining fluids. A sub-optimal antioxidant protection is believed to represent a main contributor to oxidative stress and to the poor control of immuno-inflammatory pathways in these patients. Observed defects include an impaired reduced glutathione metabolism and lowered intake and absorption of fat-soluble antioxidants (vitamin E, carotenoids, coenzyme Q-10, some polyunsaturated fatty acids, etc.) and oligoelements (such as Se, Cu and Zn) that are involved in reactive oxygen species detoxification by means of enzymatic defenses. Oral supplements and aerosolized formulations of thiols have been used in the antioxidant therapy of this inherited disease with the main aim of reducing the extent of oxidative lesions and the rate of lung deterioration. Despite positive effects on laboratory end points, poor evidence was obtained on the side of clinical outcome so far. These aspects examined in this critical review of the literature clearly suggest that further and more rigorous trials are needed together with new generations of pharmacological tools to a more effective antioxidant and anti-inflammatory therapy of cystic fibrosis patients. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.


Life Sciences | 2010

γ- and δ-tocotrienols exert a more potent anticancer effect than α-tocopheryl succinate on breast cancer cell lines irrespective of HER-2/neu expression

Elisa Pierpaoli; Valentina Viola; Francesca Pilolli; Marta Piroddi; Francesco Galli; Mauro Provinciali

AIMS Breast cancer is the most common malignancy among women, with an age-specific incidence profile. During the last years much evidence has accumulated demonstrating the anticancer activity of tocotrienols (T3), a subfamily of natural vitamin E (VE). In this study, mouse and human breast cancer cells (with or without HER-2/neu oncogene overexpression) were used to investigate the anticancer effect of alpha-, gamma-, and delta-tocotrienols in comparison with alpha-tocopheryl succinate (alpha-TOS), a synthetic derivative with widely recognized anticancer properties. MAIN METHODS Human and mouse breast cancer cell lines were used. The effect of VE compounds on cell viability was investigated using Alamar Blue assay. Apoptosis was assessed by propidium iodide and JC-1 staining. Expression of senescence-associated markers was evaluated by RT-PCR and Western blot analysis was used to examine the changes in the expression levels of HER-2/neu. KEY FINDINGS gamma- and delta-Tau3 reduced cell viability with IC(50) values of less than half those of alpha-T3 and alpha-TOS. gamma- and delta-Tau3, and alpha-TOS to a lesser extent, induced apoptosis possibly via the mitochondrial pathway, and the expression of senescent-like growth arrest markers as p53, p21, and p16. Both alpha-TOS and tocotrienols downregulated HER-2/neu in tumor cells overexpressing this oncogene, but this effect did not seem to be essential for the antitumor activity of these compounds. SIGNIFICANCE We demonstrate that in HER-2/neu breast cancer cells, the non-alpha form of T3 shows stronger anticancer activity than the synthetic VE-derivative alpha-TOS and this effect occurs independently from the inhibition of HER-2/neu oncogene expression.


Journal of Nutritional Biochemistry | 2012

Inhibition of NF-κB nuclear translocation via HO-1 activation underlies α-tocopheryl succinate toxicity

Ilaria Bellezza; Arianna Tucci; Francesco Galli; Silvia Grottelli; Anna Lisa Mierla; Francesca Pilolli; Alba Minelli

α-Tocopheryl succinate (α-TOS) inhibits oxidative phosphorylation at the level of mitochondrial complex I and II, thus promoting cancer cell death through mitochondrial reactive oxygen species (ROS) generation. Redox imbalance activates NF-E2 p45-related factor 2 (Nrf2), a transcription factor involved in cell protection and detoxification responses. Here we examined the involvement of heme oxygenase-1 (HO-1) in the regulation of nuclear factor κB (NF-κB) signaling by short exposure to α-TOS in prostate cancer cells. A short-term (4 h) exposure to α-TOS causes a significant reduction in cell viability (76%±9%) and a moderate rise in ROS production (113%±8%). α-TOS alters glutathione (GSH) homeostasis by inducing a biphasic effect, i.e., an early (1 h) decrease in intracellular GSH content (56%±20%) followed by a threefold rise at 4 h. α-TOS increases nuclear translocation and electrophile-responsive/antioxidant-responsive elements binding activity of Nrf2, resulting in up-regulation of downstream genes cystine-glutamic acid exchange transporter and HO-1, while decreasing NF-κB nuclear translocation. This effect is suppressed by the pharmacological inhibition of HO-1 and mimicked by the end-products of HO activity, i.e., bilirubin and carbon monoxide. Results suggest a little understood mechanism for α-TOS-induced inhibition of NF-κB nuclear translocation due to HO-1 up-regulation.


Amino Acids | 2011

Plasma nitroproteome of kidney disease patients

Marta Piroddi; Angelo Palmese; Francesca Pilolli; Angela Amoresano; Piero Pucci; Claudio Ronco; Francesco Galli

Abstract3′-nitrotyrosine (3NT) is a post-translational modification (PTM) of body fluids and tissues that is sustained by chronic inflammation and oxidative stress, two main clinical traits of chronic kidney disease (CKD). Despite this background, protein targets and their differential susceptibility to in vivo nitration remain almost completely unexplored in CKD. This study reports a first investigation of plasma nitroproteome in these patients, carried out by both immunorecognition and LC-MS/MS techniques. Plasma proteins of chronic and end-stage KD patients showed a higher burden of nitration than in healthy controls, but main nitration targets appeared to be the same in these populations. Immunoblotting data showed that uremic albumin is largely represented in the uremic nitroproteome together with fibrinogen chains (A, B and C), transferrin, α1-antitrypsin, complement factor D, haptoglobin, and IgG light and heavy chains. However, immunopurification and affinity chromatography experiments demonstrated that the relative content of 3NT on the albumin molecule was very low when compared with that of the remaining plasma proteins. The uremic nitroproteome was investigated using also plasma proteins obtained by in vivo ultrafiltration from patients treated with protein leaking or standard high-flux hemodialyzers. The study of these samples revealed the possibility to selectively remove protein nitration products during hemodialysis. Identification of intramolecular sites of nitration was preliminarily obtained in IgG chains isolated by 2D PAGE and assessed by bidimensional tandem mass spectrometry after chemoselective tagging. Further studies are needed to confirm at the molecular level the presence of nitrated Tyr residues in other proteins tentatively identified as nitration targets in this study and to explore the biological meaning of such a selective modification of plasma proteins by reactive nitrogen species in uremia and dialysis patients.


Genes and Nutrition | 2012

Why tocotrienols work better: insights into the in vitro anti-cancer mechanism of vitamin E

Valentina Viola; Francesca Pilolli; Marta Piroddi; Elisa Pierpaoli; Fiorenza Orlando; Mauro Provinciali; Michele Betti; Francesco Mazzini; Francesco Galli

The selective constraint of liver uptake and the sustained metabolism of tocotrienols (T3) demonstrate the need for a prompt detoxification of this class of lipophilic vitamers, and thus the potential for cytotoxic effects in hepatic and extra-hepatic tissues. Hypomethylated (γ and δ) forms of T3 show the highest in vitro and in vivo metabolism and are also the most potent natural xenobiotics of the entire vitamin E family of compounds. These stimulate a stress response with the induction of detoxification and antioxidant genes. Depending on the intensity of this response, these genes may confer cell protection or alternatively they stimulate a senescence-like phenotype with cell cycle inhibition or even mitochondrial toxicity and apoptosis. In cancer cells, the uptake rate and thus the cell content of these vitamers is again higher for the hypomethylated forms, and it is the critical factor that drives the dichotomy between protection and toxicity responses to different T3 forms and doses. These aspects suggest the potential for marked biological activity of hypomethylated “highly metabolized” T3 that may result in cytoprotection and cancer prevention or even chemotherapeutic effects. Cytotoxicity and metabolism of hypomethylated T3 have been extensively investigated in vitro using different cell model systems that will be discussed in this review paper as regard molecular mechanisms and possible relevance in cancer therapy.


Journal of Renal Nutrition | 2011

Circulating Levels and Dietary Intake of the Advanced Glycation End-product Marker Carboxymethyl Lysine in Chronic Kidney Disease Patients on Conservative Predialysis Therapy: A Pilot Study

Marta Piroddi; Ingrid Palazzetti; Giuseppe Quintaliani; Francesca Pilolli; Massimiliano Montaldi; Viola Valentina; Carmelo Libetta; Francesco Galli

OBJECTIVE Advanced glycation end-products (AGEs) are proposed to influence inflammatory pathways and cardiovascular risk in chronic kidney disease (CKD). Dietary AGEs are believed to sustain circulating levels and toxicity in this condition. DESIGN AND PATIENTS We investigated this aspect in a cross-sectional pilot study measuring levels of the AGE marker carboxymethyl lysine (CML) and fluorescent AGEs in the blood of pre-dialysis patients with CKD and hemodialysis (HD) patients (n = 10 each), and in a group of matched healthy controls (Ctr). METHODS Plasma CML was measured by immuno-dot blot and fluorescent AGEs were determined by high-performance liquid chromatography (HPLC) analysis measuring the fluorescence of the cross-link pentosidine. The dietary intake of CML was assessed by dietary recall to trace total AGE intake in patients with CKD and the Ctr group. All the subjects included in the study were assessed for dietary intake while maintaining their usual diet. Main exclusion criteria for patients with CKD and HD were severe protein-caloric malnutrition and inflammation (measured by high sensitivity C-reactive protein and interleukin-6 levels). RESULTS Plasma CML, as well as free and protein-bound fluorescent AGEs, significantly increased in CKD and even more in HD patients than that of the Ctr group. In patients with CKD, the average dietary intake of CML was less than half than that of the Ctr group (6 vs. 13 MU/day) and the lowered protein intake adopted spontaneously by these patients appear to explain this finding. CONCLUSIONS The results show that the intake of CML does not affect circulating levels of this as well as of other AGEs, in well nourished predialysis CKD patients.


American Journal of Nephrology | 2012

Vitamin E as a functional and biocompatibility modifier of synthetic hemodialyzer membranes: an overview of the literature on vitamin E-modified hemodialyzer membranes.

Marta Piroddi; Francesca Pilolli; Masaharu Aritomi; Francesco Galli

Along with one century of history, research has provided many solutions for hemodialysis (HD) biomaterials, encompassing several generations of copolymers that have found wide application in the development of hollow-fiber dialyzer membranes. Polysulfone-based biomaterials have gained increasing consideration and are now the gold standard in the production of biocompatible hemodialyzers. However, even the highest biocompatibility now available cannot exclude that dialyzer membranes and the overall extracorporeal circulation may produce at the subclinical level immunoinflammatory reactions and thus an increased cardiovascular risk of patients on regular HD therapy. The lipophilic antioxidant and radical scavenger vitamin E has been used (as α-tocopherol) to modify cellulosic and synthetic hollow-fiber membranes with the ultimate goal to neutralize harmful reactive species and to mimic lipid structures of blood cell plasmalemma and lipoprotein particles. Besides filtration and biocompatibility, this modifier has introduced a third function of dialyzer membranes, namely ‘antioxidant bioactivity’. Vitamin E can also serve as a template molecule to produce synthetic redox-active and -silent (non-antioxidant) modifiers for future generations of dialyzer membranes. This mini-review article describes the evolution of vitamin E-derived copolymers as a generation of biomaterials that has offered a clinical challenge and still represents a chance to further improving the quality of HD therapy.


Acta Biomaterialia | 2009

Analysis method and characterization of the antioxidant capacity of vitamin E-interactive polysulfone hemodialyzers.

Alessandro Floridi; Marta Piroddi; Francesca Pilolli; Yutaka Matsumoto; Masaharu Aritomi; Francesco Galli

The lipophilic antioxidant vitamin E was used as a surface modifier (or coating agent) of hollow-fiber hemodialyzer membranes with the aim of increasing their biocompatibility and preventing oxidative stress, which are the main clinical drawbacks in hemodialysis (HD) therapy. At present, the redox chemistry of vitamin E-modified dialyzers is not well characterized and there is no standard method to assess the antioxidant capacity of these biomembranes under conditions that simulate those observed during HD therapy. With this study, we developed an original online method to determine the antioxidant capacity of vitamin E-modified dialyzer membranes during circulation experiments. This method is based on a spectrophotometric assay known as the ferric reducing/antioxidant power assay (FRAP). The principle of FRAP and its application to the qualitative and quantitative assessment of miniaturized polysulfone (PS)-based vitamin E-modified dialyzers (PS-VE) were verified by the accurate in vitro analysis of the iron-catalyzed oxidation of vitamin E. The antioxidant capacity of miniaturized PS-VE samples assessed in this study was of 14.5 microM Fe(2+), which corresponded to the transformation of nearly one-third of the vitamin E bound to the hollow-fiber membrane to its oxidation end product alpha-tocopherol quinone. This method shows good reproducibility and intra- and inter-assay precision, and can be easily adapted to determine the redox activity of every type of vitamin E-modified dialyzers during technological investigation, manufacturing control and clinical research.


Journal of Biomedical Informatics | 2011

Predicting microRNA modulation in human prostate cancer using a simple String IDentifier (SID1.0)

Maria Cristina Albertini; Fabiola Olivieri; Raffaella Lazzarini; Francesca Pilolli; Francesco Galli; Giorgio Spada; Augusto Accorsi; Maria Rita Rippo; Antonio Procopio

To make faster and efficient the identification of mRNA targets common to more than one miRNA, and to identify new miRNAs modulated in specific pathways, a computer program identified as SID1.0 (simple String IDentifier) was developed and successfully applied in the identification of deregulated miRNAs in prostate cancer cells. This computationally inexpensive Fortran program is based on the strategy of exhaustive search and specifically designed to screen shared data (target genes, miRNAs and pathways) available from PicTar and DIANA-MicroT 3.0 databases. As far as we know this is the first software designed to filter data retrieved from available miRNA databases. SID1.0 takes advantage of the standard Fortran intrinsic functions for manipulating text strings and requires ASCII input files. In order to demonstrate SID1.0 applicability, some miRNAs expected from the literature to associate with cancerogenesis (miR-125b, miR-148a and miR-141), were randomly identified as main entries for SID1.0 to explore matching sequences of mRNA targets and also to explore KEGG pathways for the presence of ID codes of targeted genes. Besides genes and pathways already described in the literature, SID1.0 has proven to useful for predicting other genes involved in prostate carcinoma. These latter were used to identify new deregulated miRNAs: miR-141, miR-148a, miR-19a and miR-19b. Prediction data were preliminary confirmed by expression analysis of the identified miRNAs in androgen-dependent (LNCaP) and independent (PC3) prostate carcinoma cell lines and in normal prostatic epithelial cells (PrEC).

Collaboration


Dive into the Francesca Pilolli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandra Bragonzi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Battistoni

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Luigi Iuliano

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge