Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Prestori is active.

Publication


Featured researches published by Francesca Prestori.


The Journal of Physiology | 2004

Increased neurotransmitter release during long-term potentiation at mossy fibre–granule cell synapses in rat cerebellum

Elisabetta Sola; Francesca Prestori; Paola Rossi; Vanni Taglietti; Egidio D'Angelo

During long‐term potentiation (LTP) at mossy fibre–granule cell synapses in rat cerebellum synaptic transmission and granule cell intrinsic excitability are enhanced. Although it is clear that changes in granule cell excitability are mediated postsynaptically, there is as yet no direct evidence for the site and mechanism of changes in transmission. To approach this problem, evoked postsynaptic currents (EPSCs) and miniature synaptic currents (mEPSCs) were recorded by patch‐clamp in cerebellar slices obtained from P17–P23 rats. LTP was induced by theta‐burst stimulation paired with depolarization. During LTP, the EPSCs showed a significant decrease in the coefficient of variation (CV; 28.9 ± 5.2%, n= 8; P < 0.002), the number of failures (87.1 ± 41.9%, n= 8; P < 0.04), and the paired‐pulse ratio (PPR; 25.5 ± 4.1%n= 5; P < 0.02). Similar changes were observed by increasing neurotransmitter release (extracellular solutions with high Ca2+/Mg2+ ratio), whereas increases in CV, numbers of failures and PPR occurred when release was decreased (extracellular solutions with low Ca2+/Mg2+ ratio; 10 μm Cl‐adenosine). No changes followed modifications of postsynaptic holding potentials, while CV and failures were reduced when the number of active synapses was increased. LTP was prevented by use of solutions with high Ca2+/Mg2+ ratio. Moreover, LTP and the associated CV decrease were observed in the spillover‐mediated component of AMPA EPSCs and in NMDA EPSCs. During LTP, mEPSCs did not change in amplitude or variability but significantly increased in frequency (47.6 ± 16%, n= 4; P < 0.03). By binomial analysis changes in EPSCs were shown to be due to increased release probability (from 0.6 ± 0.08 to 0.73 ± 0.06, n= 7; P < 0.02) with a constant number of three to four releasing sites. These observations provide evidence for increased neurotransmitter release during LTP at mossy fibre–granule cell synapses.


The Journal of Neuroscience | 2005

Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage.

David Gall; Francesca Prestori; Elisabetta Sola; Anna D'Errico; Céline Roussel; Lia Forti; Paola Rossi; Egidio D'Angelo

Variations in intracellular calcium concentration ([Ca2+]i) provide a critical signal for synaptic plasticity. In accordance with Hebbs postulate (Hebb, 1949), an increase in postsynaptic [Ca2+]i can induce bidirectional changes in synaptic strength depending on activation of specific biochemical pathways (Bienenstock et al., 1982; Lisman, 1989; Stanton and Sejnowski, 1989). Despite its strategic location for signal processing, spatiotemporal dynamics of [Ca2+]i changes and their relationship with synaptic plasticity at the cerebellar mossy fiber (mf)-granule cell (GrC) relay were unknown. In this paper, we report the plasticity/[Ca2+]i relationship for GrCs, which are typically activated by mf bursts (Chadderton et al., 2004). Mf bursts caused a remarkable [Ca2+]i increase in GrC dendritic terminals through the activation of NMDA receptors, metabotropic glutamate receptors (probably acting through IP3-sensitive stores), voltage-dependent calcium channels, and Ca2+-induced Ca2+ release. Although [Ca2+]i increased with the duration of mf bursts, long-term depression was found with a small [Ca2+]i increase (bursts <250 ms), and long-term potentiation (LTP) was found with a large [Ca2+]i increase (bursts >250 ms). LTP and [Ca2+]i saturated for bursts >500 ms and with theta-burst stimulation. Thus, bursting enabled a Ca2+-dependent bidirectional Bienenstock-Cooper-Munro-like learning mechanism providing the cellular basis for effective learning of burst patterns at the input stage of the cerebellum.


The Journal of Neuroscience | 2008

Altered Neuron Excitability and Synaptic Plasticity in the Cerebellar Granular Layer of Juvenile Prion Protein Knock-Out Mice with Impaired Motor Control

Francesca Prestori; Paola Rossi; Bertrand Bearzatto; Jeanne Lainé; Daniela Necchi; Shyam Diwakar; Serge N. Schiffmann; Herbert Axelrad; Egidio D'Angelo

Although the role of abnormal prion protein (PrP) conformation in generating infectious brain diseases (transmissible spongiform encephalopathy) has been recognized, the function of PrP in the normal brain remains mostly unknown. In this investigation, we considered the effect of PrP gene knock-out (PrP0/0) on cerebellar neural circuits and in particular on granule cells, which show intense PrP expression during development and selective affinity for PrP. At the third postnatal week, when PrP expression would normally attain mature levels, PrP0/0 mice showed low performance in the accelerating rotarod and runway tests and the functioning of 40% of granule cells was abnormal. Spikes were slow, nonovershooting, and nonrepetitive in relation with a reduction in transient inward and outward membrane currents, and also the EPSPs and EPSCs had slow kinetics. Overall, these alterations closely resembled an immature phenotype. Moreover, in slow-spiking PrP0/0 granule cells, theta-burst stimulation was unable to induce any long-term potentiation. This profound impairment in synaptic excitation and plasticity was associated with a protracted proliferation of granule cells and disappeared at P40–P50 along with the recovery of normal motor behavior (Büeler et al., 1992). These results suggest that PrP plays an important role in granule cell development eventually regulating cerebellar network formation and motor control.


Brain Research Reviews | 2011

The cerebellar network: From structure to function and dynamics

Egidio D'Angelo; Paolo Mazzarello; Francesca Prestori; Jonathan Mapelli; Sergio Solinas; Paola Lombardo; Elisabetta Cesana; Daniela Gandolfi; L. Congi

Since the discoveries of Camillo Golgi and Ramón y Cajal, the precise cellular organization of the cerebellum has inspired major computational theories, which have then influenced the scientific thought not only on the cerebellar function but also on the brain as a whole. However, six major issues revealing a discrepancy between morphologically inspired hypothesis and function have emerged. (1) The cerebellar granular layer does not simply operate a simple combinatorial decorrelation of the inputs but performs more complex non-linear spatio-temporal transformations and is endowed with synaptic plasticity. (2) Transmission along the ascending axon and parallel fibers does not lead to beam formation but rather to vertical columns of activation. (3) The olivo-cerebellar loop could perform complex timing operations rather than error detection and teaching. (4) Purkinje cell firing dynamics are much more complex than for a linear integrator and include pacemaking, burst-pause discharges, and bistable states in response to mossy and climbing fiber synaptic inputs. (5) Long-term synaptic plasticity is far more complex than traditional parallel fiber LTD and involves also other cerebellar synapses. (6) Oscillation and resonance could set up coherent cycles of activity designing a functional geometry that goes far beyond pre-wired anatomical circuits. These observations clearly show that structure is not sufficient to explain function and that a precise knowledge on dynamics is critical to understand how the cerebellar circuit operates.


The Journal of Physiology | 2009

Differential induction of bidirectional long‐term changes in neurotransmitter release by frequency‐coded patterns at the cerebellar input

Anna D’Errico; Francesca Prestori; Egidio D'Angelo

Sensory stimulation conveys spike discharges of variable frequency and duration along the mossy fibres of cerebellum raising the question of whether and how these patterns determine plastic changes at the mossy fibre–granule cell synapse. Although various combinations of high‐frequency bursts and membrane depolarization can induce NMDA receptor‐dependent long‐term depression (LTD) and long‐term potentiation (LTP), the effect of different discharge frequencies remained unknown. Here we show that low‐frequency mossy fibre stimulation (100 impulses−1 Hz) induces mGlu receptor‐dependent LTD. For various burst frequencies, the plasticity–[Ca2+]i relationship was U‐shaped resembling the Bienenstok–Cooper–Munro (BCM) learning rule. Moreover, LTD expression was associated with increased paired‐pulse ratio, coefficient of variation and failure rate, and with a decrease in release probability, therefore showing changes opposite to those characterizing LTP. The plasticity–[Ca2+]i relationship and the changes in neurotransmitter release measured by varying induction frequencies were indistinguishable from those obtained by varying high‐frequency burst duration. These results suggest that different glutamate receptors converge onto a final common mechanism translating the frequency and duration of mossy fibre discharges into a regulation of the LTP/LTD balance, which may play an important role in adapting spatio‐temporal signal transformations at the cerebellar input stage.


The Journal of Neuroscience | 2010

Behavioral and Cerebellar Transmission Deficits in Mice Lacking the Autism-Linked Gene Islet Brain-2

Joanna Giza; Michael J. Urbanski; Francesca Prestori; Bhaswati Bandyopadhyay; Annie Yam; Victor L. Friedrich; Kevin Kelley; Egidio D'Angelo; Mitchell Goldfarb

Deletion of the human SHANK3 gene near the terminus of chromosome 22q is associated with Phelan–McDermid syndrome and autism spectrum disorders. Nearly all such deletions also span the tightly linked IB2 gene. We show here that IB2 protein is broadly expressed in the brain and is highly enriched within postsynaptic densities. Experimental disruption of the IB2 gene in mice reduces AMPA and enhances NMDA receptor-mediated glutamatergic transmission in cerebellum, changes the morphology of Purkinje cell dendritic arbors, and induces motor and cognitive deficits suggesting an autism phenotype. These findings support a role for human IB2 mutation as a contributing genetic factor in Chr22qter-associated cognitive disorders.


Progress in Brain Research | 2005

Long-term potentiation of synaptic transmission at the mossy fiber-granule cell relay of cerebellum.

Egidio D'Angelo; Pier Luca Rossi; David Gall; Francesca Prestori; Thierry Nieus; Arianna Maffei; Elisabetta Sola

In the last decade, the physiology of cerebellar neurons and synapses has been extended to a considerable extent. We have found that the mossy fiber-granule cell relay can generate a complex form of long-term potentiation (mf-GrC LTP) following high-frequency mf discharge. Induction. Mf-GrC LTP depends on NMDA and mGlu receptor activation, intracellular Ca(2+) increase, PKC activation, and NO production. The preventative action of intracellular agents (BAPTA, PKC-inhibitors) and of membrane hyperpolarization, and the correlated increase in intracellular Ca(2+) observed using fluorescent dyes, indicate that induction occurs postsynaptically. Expression. Expression includes three components: (a) an increase of synaptic currents, (b) an increase of intrinsic excitability in GrC, and (c) an increase of intrinsic excitability in mf terminals. Based on quantal analysis, the EPSC increase is mostly explained by enhanced neurotransmitter release. NO is a candidate retrograde neurotransmitter which could determine both presynaptic current changes and LTP. NO cascade blockers inhibit both presynaptic current changes and LTP. The increase in intrinsic excitability involves a raise in apparent input resistance in the subthreshold region and a spike threshold reduction. Together with other forms of cerebellar plasticity, mf-GrC LTP opens new hypothesis on how the cerebellum processes incoming information.


Frontiers in Neural Circuits | 2013

The cerebellar Golgi cell and spatiotemporal organization of granular layer activity

Egidio D'Angelo; Sergio Solinas; Jonathan Mapelli; Daniela Gandolfi; Lisa Mapelli; Francesca Prestori

The cerebellar granular layer has been suggested to perform a complex spatiotemporal reconfiguration of incoming mossy fiber signals. Central to this role is the inhibitory action exerted by Golgi cells over granule cells: Golgi cells inhibit granule cells through both feedforward and feedback inhibitory loops and generate a broad lateral inhibition that extends beyond the afferent synaptic field. This characteristic connectivity has recently been investigated in great detail and been correlated with specific functional properties of these neurons. These include theta-frequency pacemaking, network entrainment into coherent oscillations and phase resetting. Important advances have also been made in terms of determining the membrane and synaptic properties of the neuron, and clarifying the mechanisms of activation by input bursts. Moreover, voltage sensitive dye imaging and multi-electrode array (MEA) recordings, combined with mathematical simulations based on realistic computational models, have improved our understanding of the impact of Golgi cell activity on granular layer circuit computations. These investigations have highlighted the critical role of Golgi cells in: generating dense clusters of granule cell activity organized in center-surround structures, implementing combinatorial operations on multiple mossy fiber inputs, regulating transmission gain, and cut-off frequency, controlling spike timing and burst transmission, and determining the sign, intensity and duration of long-term synaptic plasticity at the mossy fiber-granule cell relay. This review considers recent advances in the field, highlighting the functional implications of Golgi cells for granular layer network computation and indicating new challenges for cerebellar research.


Neuroscience | 2011

NR2A subunit of the N-methyl d-aspartate receptors are required for potentiation at the mossy fiber to granule cell synapse and vestibulo-cerebellar motor learning

Corina E. Andreescu; Francesca Prestori; F. Brandalise; A. D'Errico; M. T. G. De Jeu; Paola Rossi; Laura Botta; Georg Köhr; P. Perin; Egidio D'Angelo; C.I. De Zeeuw

Traditionally studies aimed at elucidating the molecular mechanisms underlying cerebellar motor learning have been focused on plasticity at the parallel fiber to Purkinje cell synapse. In recent years, however, the concept is emerging that formation and storage of memories are both distributed over multiple types of synapses at different sites. Here, we examined the potential role of potentiation at the mossy fiber to granule cell synapse, which occurs upstream to plasticity in Purkinje cells. We show that null-mutants of N-methyl d-aspartate-NR2A receptors (NMDA-NR2A(-/-) mice) have impaired induction of postsynaptic long-term potentiation (LTP) at the mossy fiber terminals and a reduced ability to raise the granule cell synaptic excitation, while the basic excitatory output of the mossy fibers is unaffected. In addition, we demonstrate that these NR2A(-/-) mutants as well as mutants in which the C terminal in the NR2A subunit is selectively truncated (NR2A(ΔC/ΔC) mice) have deficits in phase reversal adaptation of their vestibulo-ocular reflex (VOR), while their basic eye movement performance is similar to that of wild type littermates. These results indicate that NMDA-NR2A mediated potentiation at the mossy fiber to granule cell synapse is not required for basic motor performance, and they raise the possibility that it may contribute to some forms of vestibulo-cerebellar memory formation.


PLOS ONE | 2013

Gating of Long-Term Potentiation by Nicotinic Acetylcholine Receptors at the Cerebellum Input Stage

Francesca Prestori; Claudia Bonardi; Lisa Mapelli; Paola Lombardo; Rianne Goselink; Maria Egle De Stefano; Daniela Gandolfi; Jonathan Mapelli; Daniel Bertrand; Martijn Schonewille; Chris I. De Zeeuw; Egidio D’Angelo

The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD) between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plasticity processes. Cholinergic systems innervating the cerebellum are thought to enhance procedural learning and memory. Here we show that a specific subtype of acetylcholine receptors, the α7-nAChRs, are distributed both in cerebellar mossy fibre terminals and granule cell dendrites and contribute substantially to synaptic regulation. Selective α7-nAChR activation enhances the postsynaptic calcium increase, allowing weak mossy fibre bursts, which would otherwise cause LTD, to generate robust LTP. The local microperfusion of α7-nAChR agonists could also lead to in vivo switching of LTD to LTP following sensory stimulation of the whisker pad. In the cerebellar flocculus, α7-nAChR pharmacological activation impaired vestibulo-ocular-reflex adaptation, probably because LTP was saturated, preventing the fine adjustment of synaptic weights. These results show that gating mechanisms mediated by specific subtypes of nicotinic receptors are required to control the LTD/LTP balance at the mossy fibre-granule cell relay in order to regulate cerebellar plasticity and behavioural adaptation.

Collaboration


Dive into the Francesca Prestori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge