Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Pugliese is active.

Publication


Featured researches published by Francesca Pugliese.


Journal of the American College of Cardiology | 2008

Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study.

W. Bob Meijboom; Matthijs F.L. Meijs; Joanne D. Schuijf; Maarten J. Cramer; Nico R. Mollet; Carlos Van Mieghem; Koen Nieman; Jacob M. van Werkhoven; Gabija Pundziute; Annick C. Weustink; Alexander M. de Vos; Francesca Pugliese; Benno J. Rensing; J. Wouter Jukema; Jeroen J. Bax; Mathias Prokop; Pieter A. Doevendans; Myriam Hunink; Gabriel P. Krestin; Pim J. de Feyter

OBJECTIVES This study sought to determine the diagnostic accuracy of 64-slice computed tomographic coronary angiography (CTCA) to detect or rule out significant coronary artery disease (CAD). BACKGROUND CTCA is emerging as a noninvasive technique to detect coronary atherosclerosis. METHODS We conducted a prospective, multicenter, multivendor study involving 360 symptomatic patients with acute and stable anginal syndromes who were between 50 and 70 years of age and were referred for diagnostic conventional coronary angiography (CCA) from September 2004 through June 2006. All patients underwent a nonenhanced calcium scan and a CTCA, which was compared with CCA. No patients or segments were excluded because of impaired image quality attributable to either coronary motion or calcifications. Patient-, vessel-, and segment-based sensitivities and specificities were calculated to detect or rule out significant CAD, defined as >or=50% lumen diameter reduction. RESULTS The prevalence among patients of having at least 1 significant stenosis was 68%. In a patient-based analysis, the sensitivity for detecting patients with significant CAD was 99% (95% confidence interval [CI]: 98% to 100%), specificity was 64% (95% CI: 55% to 73%), positive predictive value was 86% (95% CI: 82% to 90%), and negative predictive value was 97% (95% CI: 94% to 100%). In a segment-based analysis, the sensitivity was 88% (95% CI: 85% to 91%), specificity was 90% (95% CI: 89% to 92%), positive predictive value was 47% (95% CI: 44% to 51%), and negative predictive value was 99% (95% CI: 98% to 99%). CONCLUSIONS Among patients in whom a decision had already been made to obtain CCA, 64-slice CTCA was reliable for ruling out significant CAD in patients with stable and unstable anginal syndromes. A positive 64-slice CTCA scan often overestimates the severity of atherosclerotic obstructions and requires further testing to guide patient management.


Journal of the American College of Cardiology | 2008

Comprehensive Assessment of Coronary Artery Stenoses: Computed Tomography Coronary Angiography Versus Conventional Coronary Angiography and Correlation With Fractional Flow Reserve in Patients With Stable Angina

W. Bob Meijboom; Carlos Van Mieghem; Niels van Pelt; Annick C. Weustink; Francesca Pugliese; Nico R. Mollet; Eric Boersma; E. Regar; Robert J. van Geuns; Peter de Jaegere; Patrick W. Serruys; Gabriel P. Krestin; Pim J. de Feyter

OBJECTIVES We sought to determine the diagnostic accuracy of noninvasive visual (computed tomography coronary angiography [CTCA]) and quantitative computed tomography coronary angiography (QCT) to predict the hemodynamic significance of a coronary stenosis, using intracoronary fractional flow reserve (FFR) as the reference standard. BACKGROUND It has been demonstrated that CTCA provides excellent diagnostic sensitivity for identifying coronary stenoses, but may lack accurate delineation of the hemodynamic significance. METHODS We investigated 79 patients with stable angina pectoris who underwent both 64-slice or dual-source CTCA and FFR measurement of discrete coronary stenoses. CTCA and conventional coronary angiography (CCA), and QCT and quantitative coronary angiography (QCA), were performed to determine the severity of a stenosis that was compared with FFR measurements. A significant anatomical or functional stenosis was defined as >/=50% diameter stenosis or an FFR <0.75. Stented segments and bypass grafts were not included in the analysis. RESULTS A total of 89 stenoses were evaluated of which 18% (16 of 89) had an FFR <0.75. The diagnostic accuracy of CTCA, QCT, CCA, and QCA to detect a hemodynamically significant coronary lesion was 49%, 71%, 61%, and 67%, respectively. Correlation between QCT and QCA with FFR measurement was weak (R values of -0.32 and -0.30, respectively). Correlation between QCT and QCA was significant, but only moderate (R = 0.53; p < 0.0001). CONCLUSIONS The anatomical assessment of the hemodynamic significance of coronary stenoses determined by visual CTCA, CCA, or QCT or QCA does not correlate well with the functional assessment of FFR. Determining the hemodynamic significance of an angiographically intermediate stenosis remains relevant before referral for revascularization treatment.


European Heart Journal | 2011

A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension

Tessa S. S. Genders; Ewout W. Steyerberg; Hatem Alkadhi; Sebastian Leschka; Lotus Desbiolles; Koen Nieman; Tjebbe W. Galema; W. Bob Meijboom; Nico R. Mollet; Pim J. de Feyter; Filippo Cademartiri; Erica Maffei; Marc Dewey; Elke Zimmermann; Michael Laule; Francesca Pugliese; Rossella Barbagallo; Valentin Sinitsyn; Jan Bogaert; Kaatje Goetschalckx; U. Joseph Schoepf; Garrett W. Rowe; Joanne D. Schuijf; Jeroen J. Bax; Fleur R. de Graaf; Juhani Knuuti; Sami Kajander; Carlos Van Mieghem; Matthijs F.L. Meijs; Maarten J. Cramer

AIMS The aim was to validate, update, and extend the Diamond-Forrester model for estimating the probability of obstructive coronary artery disease (CAD) in a contemporary cohort. METHODS AND RESULTS Prospectively collected data from 14 hospitals on patients with chest pain without a history of CAD and referred for conventional coronary angiography (CCA) were used. Primary outcome was obstructive CAD, defined as ≥ 50% stenosis in one or more vessels on CCA. The validity of the Diamond-Forrester model was assessed using calibration plots, calibration-in-the-large, and recalibration in logistic regression. The model was subsequently updated and extended by revising the predictive value of age, sex, and type of chest pain. Diagnostic performance was assessed by calculating the area under the receiver operating characteristic curve (c-statistic) and reclassification was determined. We included 2260 patients, of whom 1319 had obstructive CAD on CCA. Validation demonstrated an overestimation of the CAD probability, especially in women. The updated and extended models demonstrated a c-statistic of 0.79 (95% CI 0.77-0.81) and 0.82 (95% CI 0.80-0.84), respectively. Sixteen per cent of men and 64% of women were correctly reclassified. The predicted probability of obstructive CAD ranged from 10% for 50-year-old females with non-specific chest pain to 91% for 80-year-old males with typical chest pain. Predictions varied across hospitals due to differences in disease prevalence. CONCLUSION Our results suggest that the Diamond-Forrester model overestimates the probability of CAD especially in women. We updated the predictive effects of age, sex, type of chest pain, and hospital setting which improved model performance and we extended it to include patients of 70 years and older.


Circulation | 2006

Multislice Spiral Computed Tomography for the Evaluation of Stent Patency After Left Main Coronary Artery Stenting A Comparison With Conventional Coronary Angiography and Intravascular Ultrasound

Carlos Van Mieghem; Filippo Cademartiri; Nico R. Mollet; Patrizia Malagutti; Marco Valgimigli; Willem B. Meijboom; Francesca Pugliese; Eugene McFadden; Jurgen Ligthart; Giuseppe Runza; Nico Bruining; Pieter C. Smits; Evelyn Regar; Willem J. van der Giessen; Georgios Sianos; Ron T. van Domburg; Peter de Jaegere; Gabriel P. Krestin; Patrick W. Serruys; Pim J. de Feyter

Background— Surveillance conventional coronary angiography (CCA) is recommended 2 to 6 months after stent-supported left main coronary artery (LMCA) percutaneous coronary intervention due to the unpredictable occurrence of in-stent restenosis (ISR), with its attendant risks. Multislice computed tomography (MSCT) is a promising technique for noninvasive coronary evaluation. We evaluated the diagnostic performance of high-resolution MSCT to detect ISR after stenting of the LMCA. Methods and Results— Seventy-four patients were prospectively identified from a consecutive patient population scheduled for follow-up CCA after LMCA stenting and underwent MSCT before CCA. Until August 2004, a 16-slice scanner was used (n=27), but we switched to the 64-slice scanner after that period (n=43). Patients with initial heart rates >65 bpm received β-blockers, which resulted in a mean periscan heart rate of 57±7 bpm. Among patients with technically adequate scans (n=70), MSCT correctly identified all patients with ISR (10 of 70) but misclassified 5 patients without ISR (false-positives). Overall, the accuracy of MSCT for detection of angiographic ISR was 93%. The sensitivity, specificity, and positive and negative predictive values were 100%, 91%, 67%, and 100%, respectively. When analysis was restricted to patients with stenting of the LMCA with or without extension into a single major side branch, accuracy was 98%. When both branches of the LMCA bifurcation were stented, accuracy was 83%. For the assessment of stent diameter and area, MSCT showed good correlation with intravascular ultrasound (r=0.78 and 0.73, respectively). An intravascular ultrasound threshold value ≥1 mm was identified to reliably detect in-stent neointima hyperplasia with MSCT. Conclusions— Current MSCT technology, in combination with optimal heart rate control, allows reliable noninvasive evaluation of selected patients after LMCA stenting. MSCT is safe to exclude left main ISR and may therefore be an acceptable first-line alternative to CCA.


European Radiology | 2002

Ultrasound of tendons and nerves

Carlo Martinoli; Stefano Bianchi; M'Hamed Dahmane; Francesca Pugliese; Maria Pia Bianchi-Zamorani; Maura Valle

Tendons and nerves represent probably one of the best application of musculoskeletal US due to the high lesion detection rate and accuracy of US combined with its low cost, wide availability, and ease of use. The refinement of high-frequency broadband linear-array transducers, and sensitive color and power Doppler technology, have improved the ability of US to detect fine textural abnormalities of these structures as well as to identify a variety of pathological conditions. Characteristic echotextural patterns, closely resembling the histological ones, are typically depicted in these structures using high US frequencies. In tendon imaging, US can assess dislocations, degenerative changes and tendon tears, including intrasubstance tears, longitudinal splits, partial and complete rupture, inflammatory conditions and tendon tumors, as well as postoperative findings. In nerve imaging, US can support clinical and electrophysiological testing for detection of compressing lesions caused by nerve entrapment in a variety of osteofibrous tunnels of the limbs and extremities. Congenital anomalies, nerve tears, and neurogenic tumors can also be diagnosed. Overall, US is an effective technique for imaging tendons and nerves. In most cases, a focused US examination can be performed more rapidly and efficiently than MR imaging.


Heart | 2008

Dual source coronary computed tomography angiography for detecting in-stent restenosis

Francesca Pugliese; Annick C. Weustink; C. A. G. van Mieghem; Fillippo Alberghina; Masato Otsuka; Willem B. Meijboom; N. Van Pelt; N. Mollet; Filippo Cademartiri; Gabriel P. Krestin; M. G. Myriam Hunink; P. J. De Feyter

Objective: To evaluate the performance of dual source CT coronary angiography (DSCT-CA) in the detection of in-stent restenosis (⩾50% luminal narrowing) in symptomatic patients referred for conventional angiography (CA). Design/patients: 100 patients (78 males, age 62 (SD 10)) with chest pain were prospectively evaluated after coronary stenting. DSCT-CA was performed before CA. Setting: Many patients undergo coronary artery stenting; availability of a non-invasive modality to detect in-stent restenosis would be desirable. Results: Average heart rate (HR) was 67 (SD 12) (range 46–106) bpm. There were 178 stented lesions. The interval between stenting and inclusion in the study was 35 (SD 41) (range 3–140) months. 39/100 (39%) patients had angiographically proven restenosis. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of DSCT-CA, calculated in all stents, were 94%, 92%, 77% and 98%, respectively. Diagnostic performance at HR <70 bpm (n = 69; mean 58 bpm) was similar to that at HR ⩾70 bpm (n = 31; mean 78 bpm); diagnostic performance in single stents (n = 95) was similar to that in overlapping stents and bifurcations (n = 83). In stents ⩾3.5 mm (n = 78), sensitivity, specificity, PPV, NPV were 100%; in 3 mm stents (n = 59), sensitivity and NPV were 100%, specificity 97%, PPV 91%; in stents ⩽2.75 mm (n = 41), sensitivity was 84%, specificity 64%, PPV 52%, NPV 90%. Nine stents ⩽2.75 mm were uninterpretable. Specificity of DSCT-CA in stents ⩾3.5 mm was significantly higher than in stents ⩽2.75 mm (OR  = 6.14; 99%CI: 1.52 to 9.79). Conclusion: DSCT-CA performs well in the detection of in-stent restenosis. Although DSCT-CA leads to frequent false positive findings in smaller stents (⩽2.75 mm), it reliably rules out in-stent restenosis irrespective of stent size.


Radiology | 2008

Optimal Electrocardiographic Pulsing Windows and Heart Rate : Effect on Image Quality and Radiation Exposure at Dual-Source Coronary CT Angiography

Annick C. Weustink; Nico R. Mollet; Francesca Pugliese; Willem B. Meijboom; Koen Nieman; Majanka H. Heijenbrok-Kal; Thomas Flohr; Lisanne A. Neefjes; Filippo Cademartiri; Pim J. de Feyter; Gabriel P. Krestin

PURPOSE To determine the optimal width and timing of the electrocardiographic (ECG) pulsing window within the cardiac cycle in relation to heart rate (HR), image quality, and radiation exposure in patients who are suspected of having coronary artery disease. MATERIALS AND METHODS The institutional review board approved the study, and all patients gave informed consent. Dual-source computed tomography (CT) was performed in 301 patients (mean HR, 70.1 beats per minute +/- 13.3 [standard deviation]; range, 43-112 beats per minute) by using a wide ECG pulsing window (25%-70% of the R-R interval). Data sets were reconstructed in 5% steps from 20%-75% of R-R interval. Image quality was assessed by two observers on a per-segment level and was classified as good or impaired. High-quality data sets were those in which each segment was of good quality. The width and timing of the image reconstruction window was calculated. On the basis of these findings, an optimal HR-dependent ECG pulsing protocol was designed, and the potential dose-saving effect on effective dose (in millisieverts) was calculated. RESULTS At low HR (< or = 65 beats per minute), high-quality data sets were obtained during end diastole (ED); at high HR (> or = 80 beats per minute), they were obtained during end systole (ES); and at intermediate HR (66-79 beats per minute), they were obtained during both ES and ED. Optimal ECG pulsing windows for low, intermediate, and high HR were at 60%-76%, 30%-77%, and 31%-47% of the R-R interval, respectively, and with these levels, the effective dose was decreased at low HR from 18.7 to 6.8 mSv, at intermediate HR from 14.7 to 13.4 mSv, and at high HR from 11.3 to 4.2 mSv. CONCLUSION With optimal ECG pulsing, radiation exposure to patients, particularly those with low or high HR, can be reduced with preservation of image quality.


BMJ | 2012

Prediction model to estimate presence of coronary artery disease: Retrospective pooled analysis of existing cohorts

Tessa S. S. Genders; Ewout W. Steyerberg; M. G. Myriam Hunink; Koen Nieman; Tjebbe W. Galema; Nico R. Mollet; Pim J. de Feyter; Gabriel P. Krestin; Hatem Alkadhi; Sebastian Leschka; Lotus Desbiolles; Matthijs F.L. Meijs; Maarten J. Cramer; Juhani Knuuti; Sami Kajander; Jan Bogaert; Kaatje Goetschalckx; Filippo Cademartiri; Erica Maffei; Chiara Martini; Sara Seitun; Annachiara Aldrovandi; Simon Wildermuth; Bjoern Stinn; Juergen Fornaro; Gudrun Feuchtner; Tobias De Zordo; Thomas Auer; Fabian Plank; Guy Friedrich

Objectives To develop prediction models that better estimate the pretest probability of coronary artery disease in low prevalence populations. Design Retrospective pooled analysis of individual patient data. Setting 18 hospitals in Europe and the United States. Participants Patients with stable chest pain without evidence for previous coronary artery disease, if they were referred for computed tomography (CT) based coronary angiography or catheter based coronary angiography (indicated as low and high prevalence settings, respectively). Main outcome measures Obstructive coronary artery disease (≥50% diameter stenosis in at least one vessel found on catheter based coronary angiography). Multiple imputation accounted for missing predictors and outcomes, exploiting strong correlation between the two angiography procedures. Predictive models included a basic model (age, sex, symptoms, and setting), clinical model (basic model factors and diabetes, hypertension, dyslipidaemia, and smoking), and extended model (clinical model factors and use of the CT based coronary calcium score). We assessed discrimination (c statistic), calibration, and continuous net reclassification improvement by cross validation for the four largest low prevalence datasets separately and the smaller remaining low prevalence datasets combined. Results We included 5677 patients (3283 men, 2394 women), of whom 1634 had obstructive coronary artery disease found on catheter based coronary angiography. All potential predictors were significantly associated with the presence of disease in univariable and multivariable analyses. The clinical model improved the prediction, compared with the basic model (cross validated c statistic improvement from 0.77 to 0.79, net reclassification improvement 35%); the coronary calcium score in the extended model was a major predictor (0.79 to 0.88, 102%). Calibration for low prevalence datasets was satisfactory. Conclusions Updated prediction models including age, sex, symptoms, and cardiovascular risk factors allow for accurate estimation of the pretest probability of coronary artery disease in low prevalence populations. Addition of coronary calcium scores to the prediction models improves the estimates.


Circulation-cardiovascular Imaging | 2015

Detection of significant coronary artery disease by noninvasive anatomical and functional imaging.

Danilo Neglia; Daniele Rovai; Chiara Caselli; Mikko Pietilä; Anna Teresinska; Santiago Aguadé-Bruix; M.N. Pizzi; Giancarlo Todiere; Alessia Gimelli; Stephen Schroeder; Tanja Drosch; Rosa Poddighe; Giancarlo Casolo; Constantinos Anagnostopoulos; Francesca Pugliese; François Rouzet; Dominique Le Guludec; Francesco Cappelli; Serafina Valente; Gian Franco Gensini; Camilla Zawaideh; Selene Capitanio; Gianmario Sambuceti; Fabio Marsico; Pasquale Perrone Filardi; Covadonga Fernández-Golfín; Luis M. Rincón; Frank P. Graner; Michiel A. de Graaf; Michael Fiechter

Background—The choice of imaging techniques in patients with suspected coronary artery disease (CAD) varies between countries, regions, and hospitals. This prospective, multicenter, comparative effectiveness study was designed to assess the relative accuracy of commonly used imaging techniques for identifying patients with significant CAD. Methods and Results—A total of 475 patients with stable chest pain and intermediate likelihood of CAD underwent coronary computed tomographic angiography and stress myocardial perfusion imaging by single photon emission computed tomography or positron emission tomography, and ventricular wall motion imaging by stress echocardiography or cardiac magnetic resonance. If ≥1 test was abnormal, patients underwent invasive coronary angiography. Significant CAD was defined by invasive coronary angiography as >50% stenosis of the left main stem, >70% stenosis in a major coronary vessel, or 30% to 70% stenosis with fractional flow reserve ⩽0.8. Significant CAD was present in 29% of patients. In a patient-based analysis, coronary computed tomographic angiography had the highest diagnostic accuracy, the area under the receiver operating characteristics curve being 0.91 (95% confidence interval, 0.88–0.94), sensitivity being 91%, and specificity being 92%. Myocardial perfusion imaging had good diagnostic accuracy (area under the curve, 0.74; confidence interval, 0.69–0.78), sensitivity 74%, and specificity 73%. Wall motion imaging had similar accuracy (area under the curve, 0.70; confidence interval, 0.65–0.75) but lower sensitivity (49%, P<0.001) and higher specificity (92%, P<0.001). The diagnostic accuracy of myocardial perfusion imaging and wall motion imaging were lower than that of coronary computed tomographic angiography (P<0.001). Conclusions—In a multicenter European population of patients with stable chest pain and low prevalence of CAD, coronary computed tomographic angiography is more accurate than noninvasive functional testing for detecting significant CAD defined invasively. Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT00979199.


Journal of the American College of Cardiology | 2010

Imaging of Vascular Inflammation With [11C]-PK11195 and Positron Emission Tomography/Computed Tomography Angiography

Francesca Pugliese; Oliver Gaemperli; Anne R. Kinderlerer; F. Lamare; Joseph Shalhoub; Alun H. Davies; Ornella Rimoldi; Justin C. Mason; Paolo G. Camici

OBJECTIVES We sought to investigate whether positron emission tomography/computed tomography (CT) angiography using [11C]-PK11195, a selective ligand for peripheral benzodiazepine receptors expressed in activated macrophages, can be used to image vascular inflammation. BACKGROUND Activated macrophages and T lymphocytes are fundamental elements in the pathogenesis of large-vessel vasculitides. METHODS Fifteen patients (age 52+/-16 years) with systemic inflammatory disorders (6 consecutive symptomatic patients with clinical suspicion of active vasculitis and 9 asymptomatic control patients) underwent positron emission tomography with [11C]-PK11195 and CT angiography. [11C]-PK11195 uptake was measured by calculating target-to-background ratios of activity normalized to venous blood. RESULTS Coregistration of positron emission tomography with contrast-enhanced CT angiography facilitated localization of [11C]-PK11195 arterial wall uptake. Visual analysis revealed focal [11C]-PK11195 uptake in the arterial wall of all 6 symptomatic patients, but in none of the asymptomatic controls. Although serum inflammatory biomarkers (C-reactive protein, erythrocyte sedimentation rate, white cell count) did not differ significantly between the 2 groups, symptomatic patients had increased [11C]-PK11195 vascular uptake (target-to-background ratio 2.41+/-1.59 vs. 0.98+/-0.10; p=0.001). CONCLUSIONS By binding to activated macrophages in the vessel wall, [11C]-PK11195 enables noninvasive imaging of vascular inflammation. Alternative longer-lived radioligands for probing peripheral benzodiazepine receptors are being tested for wider clinical applications.

Collaboration


Dive into the Francesca Pugliese's collaboration.

Top Co-Authors

Avatar

Gabriel P. Krestin

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Filippo Cademartiri

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Nico R. Mollet

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Pim J. de Feyter

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Willem B. Meijboom

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Annick C. Weustink

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Carlos Van Mieghem

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Koen Nieman

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Steffen E. Petersen

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge