Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Ridi is active.

Publication


Featured researches published by Francesca Ridi.


Journal of Colloid and Interface Science | 2011

Cement: a two thousand year old nano-colloid.

Francesca Ridi; Emiliano Fratini; Piero Baglioni

Since Roman times, cement is one of the synthetic materials with the largest production and usage by mankind. Its properties allowed the expansion of the Roman Empire and the building of still fascinating works. In spite of the diverse use of cement and the abundant literature accumulated during a century of systematic scientific research on this material, the understanding of its properties is still far from complete. Several issues are still open, ranging from the understanding of the hydration kinetics and the influence of the modern industrial additives, to the deep comprehension of the atomic arrangement and nanostructure of disordered hydrated calcium silicate phase (C-S-H) formed by hydration. This feature article briefly summarizes recent results in the field, highlighting the necessity for a colloidal model of the cement microstructure that, combined with the layer-like structure of the colloidal units, is the most effective approach to fully describe the characteristics of this peculiar material.


Analytical Chemistry | 2013

Part per trillion label-free electronic bioanalytical detection

Maria Magliulo; Antonia Mallardi; Roberto Gristina; Francesca Ridi; Luigia Sabbatini; Nicola Cioffi; Gerardo Palazzo; Luisa Torsi

A Functional Bio-Interlayer Organic Field-Effect Transistor (FBI-OFET) sensor, embedding a streptavidin protein capturing layer, capable of performing label-free selective electronic detection of biotin at 3 part per trillion (mass fraction) or 15 pM, is proposed here. The response shows a logarithmic dependence spanning over 5 orders of magnitude of analyte concentration. The optimization of the FBI analytical performances is achieved by depositing the capturing layer through a controllable Layer-by-Layer (LbL) assembly, while an easy processable spin-coating deposition is proposed for potential low-cost production of equally highly performing sensors. Furthermore, a Langmuirian adsorption based model allows rationalizing the analyte binding process to the capturing layer. The FBI-OFET device is shown to operate also with an antibody interlayer as well as with an ad hoc designed microfluidic system. These occurrences, along with the proven extremely high sensitivity and selectivity, open to FBI-OFETs consideration as disposable electronic strip-tests for assays in biological fluids requiring very low detection limits.


Langmuir | 2008

Acrylamide-Based Magnetic Nanosponges: A New Smart Nanocomposite Material

Massimo Bonini; Sebastian Lenz; Ester Falletta; Francesca Ridi; Emiliano Carretti; Emiliano Fratini; Albrecht Wiedenmann; Piero Baglioni

Nanocomposite materials consisting of CoFe2O4 magnetic nanoparticles and a polyethylene glycol-acrylamide gel matrix have been synthesized. The structure of such materials was studied by means of small-angle scattering of X-rays and polarized neutrons, showing that the CoFe2O4 nanoparticles were successfully and homogeneously embedded in the gel structure. Magnetic, viscoelastic, and water retention properties of the nanocomposite gel confirm that the properties of both nanoparticles and gel are combined in the resulting nanomagnetic gel. Scanning electron microscopy highlights the nanocomposite nature of the material, showing the presence of a gel structure with different pore size distributions (pores with micron and nano-size distributions) that can be used as active sponge-like nanomagnetic container for water-based formulations as oil-in-water microemulsions.


Journal of Materials Chemistry | 2014

Multiscale structure of calcium- and magnesium-silicate-hydrate gels

Wei-Shan Chiang; Giovanni Ferraro; Emiliano Fratini; Francesca Ridi; Y. Q. Yeh; U-S. Jeng; S. H. Chen; Piero Baglioni

Concrete is the worlds most widely used building material. However, the production of CaO-based cements generates large amounts of anthropogenic emissions of CO2. Among different strategies to reduce CO2 emissions, newly developed MgO-based cements, though currently suffering from inferior mechanical properties, are some of the most promising and attractive options. By combining wide- and small-angle X-ray scattering and electron microscopy, we identified differences in the multiscale structure of the two main binding phases: the calcium-silicate-hydrate (C-S-H) gel for CaO-based cements and the magnesium-silicate-hydrate (M-S-H) gel for MgO-based cements. We found the primary unit at the nanoscale level of C-S-H to be a multilayer disk-like globule, whereas for M-S-H it is a spherical globule. These prominent differences result in diverse microstructures, leading to disparities in mechanical properties and durability for the associated cements. Modulating the M-S-H structure and enhancing the compatibility between C-S-H and M-S-H will be the key to improve the robustness of eco-friendly MgO-based binders.


Soft Matter | 2011

Structure and permeability of magnetoliposomes loaded with hydrophobic magnetic nanoparticles in the presence of a low frequency magnetic field

Silvia Nappini; Massimo Bonini; Francesca Ridi; Piero Baglioni

In this paper we describe the effect of a low frequency alternating magnetic field (LF-AMF) on the structure and permeability of magnetoliposomes, i.e. liposomes formulated in the presence of magnetic nanoparticles. Hydrophobic cobalt ferrite nanoparticles (CoFe2O4) coated with a shell of oleic acid were prepared, characterized and employed in the preparation of magnetoliposomes. The stability of the lipid bilayer after the application of an oscillating magnetic field was studied by means of Dynamic Light Scattering (DLS), Small Angle Scattering of X-rays (SAXS) and Differential Scanning Calorimetry (DSC). The enhancement of liposome permeability upon LF-AMF exposure was measured as the self-quenching decrease of the fluorescent molecule carboxyfluorescein (CF) entrapped in the liposome pool. Carboxyfluorescein leakage from magnetoliposomes was investigated as a function of field frequency, time of exposure to the magnetic field, and cobalt ferrite nanoparticles concentration. Kinetics of CF release from LF-AMF treated magnetoliposomes, monitored through the fluorescence intensity increase during time, highlights a slow release of CF during the first hours, followed by a faster release a few hours after the field treatment which leads to a complete leakage of CF. DSC provides insights about the effect of the LF-AMF treatment, showing that the first few hours correspond to a complete loss of the transition peak from the lamellar gel (Lβ) phase to the liquid crystalline (Lα) phase of the PC bilayers. These results suggest that the slow release takes place through the formation of local pores or defects at the membrane level, while the fast release corresponds to an increased permeability of the membrane that can be related to a structural change of the bilayer.


Journal of Colloid and Interface Science | 2013

Microstructural changes of globules in calcium-silicate-hydrate gels with and without additives determined by small-angle neutron and X-ray scattering

Wei-Shan Chiang; Emiliano Fratini; Francesca Ridi; Sung-Hwan Lim; Yi-Qi Yeh; Piero Baglioni; Sung-Min Choi; U-Ser Jeng; Sow-Hsin Chen

The microstructure of calcium-silicate-hydrate (C-S-H) gel, a major hydrated phase of Ordinary Portland Cement, with and without polycarboxylic ether (PCE) additives is investigated by combined analyses of small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) data. The results show that these comb-shaped polymers tend to increase the size of the disk-like globules but have little influence on the thickness of the water and calcium silicate layers within the globules. As a result, the fractal packing of the globules becomes more open in the range of a few hundred nanometers, in the sense that the mass fractal dimension diminishes, since the PCE adsorption on the globules increases the repulsive force between and polydispersity of the C-S-H units. Moreover, scanning electron microscope (SEM) study of the synthesized C-S-H gels in the micrometer range shows that the PCEs depress the formation of fibrils while enhancing the foil-like morphology.


Journal of Physics: Condensed Matter | 2006

Hydration water and microstructure in calcium silicate and aluminate hydrates

Emiliano Fratini; Francesca Ridi; Sow-Hsin Chen; Piero Baglioni

Understanding the state of the hydration water and the microstructure development in a cement paste is likely to be the key for the improvement of its ultimate strength and durability. In order to distinguish and characterize the reacted and unreacted water, the single-particle dynamics of water molecules in hydrated calcium silicates (C3S, C2S) and aluminates (C3A, C4AF) were studied by quasi-elastic neutron scattering, QENS. The time evolution of the immobile fraction represents the hydration kinetics and the mobile fraction follows a non-Debye relaxation. Less sophisticated, but more accessible and cheaper techniques, like differential scanning calorimetry, DSC, and near-infrared spectroscopy, NIR, were validated through QENS results and they allow one to easily and quantitatively follow the cement hydration kinetics and can be widely applied on a laboratory scale to understand the effect of additives (i.e., superplasticizers, cellulosic derivatives, etc) on the thermodynamics of the hydration process. DSC provides information on the free water index and on the activation energy involved in the hydration process while the NIR band at 7000?cm?1 monitors, at a molecular level, the increase of the surface-interacting water. We report as an example the effect of two classes of additives widely used in the cement industry: superplasticizers, SPs, and cellulose derivatives. SPs interact at the solid surface, leading to a consistent increment of the activation energy for the processes of nucleation and growth of the hydrated phases. In contrast, the cellulosic additives do not affect the nucleation and growth activation energy, but cause a significant increment in the water availability: in other words the hydration process is more efficient without any modification of the solid/liquid interaction, as also evidenced by the 1H-NMR. Additional information is obtained by scanning electron microscopy (SEM), ultra small angle neutron scattering (USANS) and wide angle x-ray scattering (WAXD) that characterize how additives affect both the hydrated microstructure development and the original grain size. In particular, SPs alter the morphology of the hydrated phases, which no longer grow with the classic fibrillar structure on the grain surface, but nucleate in solution as globular structures. All this information converges in a quantitative, and at molecular level, description of the mechanisms involved in the setting process of one of the materials most widely used by human beings.


Journal of Colloid and Interface Science | 2011

A tri-block copolymer templated synthesis of gold nanostructures

Ester Falletta; Francesca Ridi; Emiliano Fratini; Chiara Vannucci; Patrizia Canton; Sabrina Bianchi; Valter Castelvetro; Piero Baglioni

Stable ultra-small gold nanoparticles have been synthesized in aqueous phase by using a tri-block copolymer (BMB) as a templating agent consisting of two PEG-methylacrylate chains (B blocks) anchored to a poly(methacrylic) moiety containing a trithiocarbonate unit (M block). The effect of the BMB/Au molar ratios on the final particle size, shape and monodispersity has been investigated. The synthesized nanosols have been characterized by means of Visible Absorption, Small Angle X-ray Scattering (SAXS), and Transmission Electron Microscopy (TEM). Results clearly indicate that the polymer plays a key role in determining the size and shape of gold particles, from fractal-like structures to monodisperse spherical particles with a mean diameter of about 3 nm. The aggregation behavior of these nanostructures has been characterized both in solution (SAXS) as well as on mica substrate (AFM) and has been proven to be driven by the polymer to gold concentration ratio.


Advances in Colloid and Interface Science | 2014

Magneto-responsive nanocomposites: Preparation and integration of magnetic nanoparticles into films, capsules, and gels

Francesca Ridi; Massimo Bonini; Piero Baglioni

This review reports on the latest developments in the field of magnetic nanocomposites, with a special focus on the potentials introduced by the incorporation of magnetic nanoparticles into polymer and supramolecular matrices. The general notions and the state of the art of nanocomposite materials are summarized and the results reported in the literature over the last decade on magnetically responsive films, capsules and gels are reviewed. The most promising concepts that have inspired the design of magneto-responsive nanocomposites are illustrated through remarkable examples where the integration of magnetic nanoparticles into organic architectures has successfully taken to the development of responsive multifunctional materials.


ACS Nano | 2014

Electronic transduction of proton translocations in nanoassembled lamellae of bacteriorhodopsin

Gerardo Palazzo; Maria Magliulo; Antonia Mallardi; Maria Daniela Angione; Danka Gobeljic; Gaetano Scamarcio; Emiliano Fratini; Francesca Ridi; Luisa Torsi

An organic field-effect transistor (OFET) integrating bacteriorhodopsin (bR) nanoassembled lamellae is proposed for an in-depth study of the proton translocation processes occurring as the bioelectronic device is exposed either to light or to low concentrations of general anesthetic vapors. The study involves the morphological, structural, electrical, and spectroscopic characterizations necessary to assess the functional properties of the device as well as the bR biological activity once integrated into the functional biointerlayer (FBI)-OFET structure. The electronic transduction of the protons phototranslocation is shown as a current increase in the p-type channel only when the device is irradiated with photons known to trigger the bR photocycle, while Raman spectroscopy reveals an associated C═C isomer switch. Notably, higher energy photons bring the cis isomer back to its trans form, switching the proton pumping process off. The investigation is extended also to the study of a PM FBI-OFET exposed to volatile general anesthetics such as halothane. In this case an electronic current increase is seen upon exposure to low, clinically relevant, concentrations of anesthetics, while no evidence of isomer-switching is observed. The study of the direct electronic detection of the two different externally triggered proton translocation effects allows gathering insights into the underpinning of different bR molecular switching processes.

Collaboration


Dive into the Francesca Ridi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sow-Hsin Chen

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita Gelli

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge