Francesca Rovida
University of Pavia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesca Rovida.
Journal of Medical Virology | 2009
Giuseppe Gerna; Antonio Piralla; Francesca Rovida; Vanina Rognoni; Antonietta Marchi; Franco Locatelli; Federica Meloni
While human rhinoviruses (HRVs) are well accepted as a major cause of common cold syndromes (rhinitis), their role in the etiology of lower respiratory tract infections is still controversial, and their detection in asymptomatic patients is relatively common. The HRV pathogenic role in four groups of hospitalized patients (pediatric immunocompetent and immunocompromised patients, and adult immunocompetent and immunocompromised patients) was investigated by quantifying HRV load in nasopharyngeal aspirates or bronchoalveolar lavage samples by real‐time reverse transcription PCR (RT‐PCR). Real‐time RT‐PCR was performed in duplicate on all respiratory samples resulting positive by qualitative RT‐PCR. In addition, molecular typing allowed detection of all known HRV species (A, B, and C). In immunocompetent pediatric patients HRVs were mostly associated with lower respiratory tract infections (in the absence of other viral agents) and wheezing, when viral load was ≥106 RNA copies/ml. In young immunocompromised patients (stem cell transplantation recipients), an inverse correlation between HRV persistence over time and time at which the infection occurred after transplantation was observed, whereas in adult immunocompromised patients (lung transplant recipients) HRVs could be detected at a medium–low level (<105 RNA copies/ml) in bronchoalveolar lavage samples taken routinely from asymptomatic patients. In conclusion, when detected at high viral load, HRVs may cause severe upper and lower respiratory tract infections, whereas when detected at a medium–low viral load, an event more frequent in immunocompromised subjects, they may represent only bystander viruses. J. Med. Virol. 81:1498–1507, 2009.
Journal of Medical Virology | 2006
Giuseppe Gerna; Patrizio Vitulo; Francesca Rovida; Daniele Lilleri; Carlo Pellegrini; Tiberio Oggionni; Giulia Campanini; Fausto Baldanti; M. Grazia Revello
Viral respiratory tract infections in lung transplant recipients may be severe. During three consecutive winter‐spring seasons, 49 symptomatic lung transplant recipients with suspected respiratory viral infection, and 26 asymptomatic patients were investigated for presence of respiratory viruses either in 56 nasopharyngeal aspirate or 72 bronchoalveolar lavage samples taken at different times after transplantation. On the whole, 1 asymptomatic (3.4%) and 28 symptomatic (57.1%) patients were positive for human metapneumovirus (hMPV, 4 patients), influenza virus A (3 patients), and B (2 patients), respiratory syncytial virus (2 patients), human coronavirus (2 patients), human parainfluenza virus (2 patients), rhinovirus (5 patients), while 4 patients were coinfected by 2 respiratory viruses, and 5 were infected sequentially by 2 or more respiratory viruses. In bronchoalveolar lavage samples, hMPV predominated by far over the other viruses, being responsible for 60% of positive specimens, whereas other viruses were present in nasopharyngeal aspirates at a comparable rate. RT‐PCR (detecting 43 positive samples/128 examined) was largely superior to monoclonal antibodies (detecting 17 positive samples only). In addition, HCMV was detected in association with a respiratory virus in 4/18 HCMV‐positive patients, and was found at a high concentration (>105 DNA copies/ml) in 3/16 (18.7%) patients with HCMV‐positive bronchoalveolar lavage samples and pneumonia. Coinfections and sequential infections by HCMV and respiratory viruses were significantly more frequent in patients with acute rejection and steroid treatment. In conclusion: (i) about 50% of respiratory tract infections of lung transplant recipients were associated with one or more respiratory viruses; (ii) hMPV largely predominates in bronchoalveolar lavage of symptomatic lung transplant recipients, thus suggesting a causative role in lower respiratory tract infections; (iii) RT‐PCR appears to be the method of choice for detection of respiratory viruses in lung transplant recipients, (iv) a high HCMV load in bronchoalveolar lavage is a risk factor for viral pneumonia, suggesting some measure of intervention for the control of viral infection. J. Med. Virol. 78:408–416, 2006.
Journal of Medical Virology | 2006
Giuseppe Gerna; Giulia Campanini; Francesca Rovida; Elena Percivalle; Antonella Sarasini; Antonietta Marchi; Fausto Baldanti
In the winter–spring seasons 2003–2004 and 2004–2005, 47 (5.7%) patients with acute respiratory infection associated with human coronavirus (hCoV) 229E‐, NL63‐, and OC43‐like strains were identified among 823 (597 immunocompetent and 226 immunocompromised) patients admitted to hospital with acute respiratory syndromes. Viral infections were diagnosed by either immunological (monoclonal antibodies) or molecular (RT‐PCR) methods. Each of two sets of primer pairs developed for detection of all CoVs (panCoV) failed to detect 15 of the 53 (28.3%) hCoV strains identified. On the other hand, all hCoV strains could be detected by using type‐specific primers targeting genes 1ab and N. The HuH‐7 cell line was found to be susceptible to isolation and identification of OC43‐ and 229E‐like strains. Overall, hCoV infection was caused by OC43‐like, 229E‐like, and NL63‐like strains in 25 (53.2%), 10 (21.3%), and 9 (19.1%) patients, respectively. In addition, three patients (6.4%) were infected by untypeable hCoV strains. NL63‐like strains were not found to circulate in 2003–2004, and 229E‐like strains did not circulate in 2004–2005, while OC43‐like strains were detected in both seasons. The monthly distribution reached a peak during January through March. Lower predominated over upper respiratory tract infections in each age group. In addition, hCoV infections interested only immunocompetent infants and young children during the first year of life, while all adults were immunocompromised patients. Coinfections of hCoVs and other respiratory viruses (mostly interesting the first year of life) were observed in 14 of the 47 (29.8%) patients and were associated with severe respiratory syndromes more frequently than hCoV single infections (P = 0.002). In conclusion, the use of multiple primer sets targeting different genes is recommended for diagnosis of all types of hCoV infection. In addition, the detection of still untypeable hCoV strains suggests that the number of hCoVs involved in human pathology might further increase. Finally, hCoVs should be screened routinely for in both infants and immunocompromised patients with acute respiratory infection. J. Med. Virol. 78:938–949, 2006.
Journal of Medical Virology | 2005
Francesca Rovida; Elena Percivalle; Maurizio Zavattoni; Maria Torsellini; Antonella Sarasini; Giulia Campanini; Stefania Paolucci; Fausto Baldanti; M. Grazia Revello; Giuseppe Gerna
In the winter season 2001–2002, 239 nasopharyngeal aspirate and 15 bronchoalveolar lavage samples from 208 patients (135 pediatric and 73 adults, including 19 lung transplant recipients) admitted to hospital because of an acute respiratory tract infection were examined for rapid diagnosis of respiratory viruses by two diagnostic approaches: immunological, using specific monoclonal antibodies (MAb); and molecular, using specific reverse transcription (RT)‐PCR assays. Both methods detected influenza viruses A (H1N1 and H3N2) and B, human parainfluenza virus types 1 to 3, human respiratory syncytial virus (hRSV) types A and B, and human adenoviruses. In addition, human coronavirus (hCoV) groups I (229E‐like) and II (OC43‐like), as well as the new human metapneumovirus (hMPV), types A and B, were searched for by RT‐PCR alone. When results obtained by both methods were added, the overall percentage of patients positive for at least one respiratory virus peaked at 44.2%, involving 92/208 patients (81 pediatric, and 11 adults), while 116 patients (55.8%) were negative for any respiratory virus tested. The most common circulating virus was hRSV, infecting 54 (25.9%) patients (24 type A, and 30 type B strains), followed by hMPV, infecting 12 (5.8%) patients (7 type A and 5 type B strains). Coinfections by two respiratory viruses interested 11 (5.3%) patients, and 9 (81.8%) of these were infected by hRSV in association with another respiratory virus. In the great majority of infected children, hRSV and hMPV were associated with lower respiratory tract infections. In lung transplant recipients, viruses present in bronchoalveolar lavage appeared to be associated frequently with lower respiratory tract infections. In conclusion: the combination of immunological and molecular assays is the most sensitive approach to the diagnosis of respiratory viral infections; and infections caused by the less investigated hCoVs and hMPVs represent a fair proportion of respiratory infections. J. Med. Virol. 75:336–347, 2005.
Journal of Clinical Virology | 2007
Giuseppe Gerna; Elena Percivalle; Antonella Sarasini; Giulia Campanini; Antonio Piralla; Francesca Rovida; Emilia Genini; Antonietta Marchi; Fausto Baldanti
Abstract Background Human respiratory coronavirus (hCoV) HKU1 infections were reported for the first time in 2005 in Hong Kong. Objective To investigate epidemiological, clinical, and diagnostic features of HKU1 infections. Study design Longitudinal, prospective study from November 2005 through May 2006 in a hospitalised patient population. Results Overall, 48/426 (11.3%) patients were found to be infected by hCoV acute respiratory tract infections (ARTI). Of these, 10 (19.2%) were caused by HKU1 (6 single infections and 4 coinfections) during the period January–May 2006. Diagnosis was made by using RT-PCR for all four hCoVs, and in parallel, in-house developed group-specific monoclonal antibodies (MAbs) for HKU1 and 229E. HKU1-specific MAb was able to retrospectively identify 8 of 10 HKU1 strains detected by RT-PCR. Phylogenetic analysis showed that four HKU1 strains were genotype A and six genotype B. In HKU1-infected patients, the predominant clinical symptom was rhinorrhea (nine patients). Within group II hCoV, HKU1-infected patients had a significantly lower rate of lower ARTI compared to OC43-infected patients. Conclusion HKU1 hCoV strains circulated in northern Italy during the winter–spring season 2005–2006. Both HKU1 genotypes were detected. HKU1-specific MAb may contribute to the rapid diagnosis of HKU1 infections currently performed by RT-PCR.
Journal of Clinical Virology | 2006
Antonella Sarasini; Elena Percivalle; Francesca Rovida; Giulia Campanini; Emilia Genini; Maria Torsellini; Stefania Paolucci; Fausto Baldanti; Antonietta Marchi; M. Grazia Revello; Giuseppe Gerna
Abstract Background Some diagnostic, epidemiological and clinical features of the recently discovered human metapneumovirus remain to be investigated. Objectives To study the best approach for the diagnosis of human metapneumovirus infections by both conventional and molecular methods, along with the human metapneumovirus circulation rate in northern Italy and the severity of human metapneumovirus respiratory infections in a pediatric patient population. Study design Nasopharyngeal aspirates (NPA) were taken from 306 pediatric patients during the winter–spring season 2003–2004, and examined for conventional respiratory viruses by direct fluorescent staining and cell culture, while human coronavirus and human metapneumovirus were sought by RT-PCR. Results RT-PCR detected human metapneumovirus in 40/306 (13.1%) children positive for respiratory viruses, with an incidence intermediate between that of respiratory syncytial virus (58 patients, 18.9%) and that of influenzavirus infections (29 patients, 9.5%). Phylogenetic analysis showed cocirculation of both human metapneumovirus types (A and B) as well as their relevant subtypes (A1–A2 and B1–B2). Clinically, human metapneumovirus was found to be second to human respiratory syncytial virus alone, as a cause of respiratory tract infections, while duration of virus excretion appeared to correlate with severity of infection, and virus load in NPA with the stage of respiratory infection. Conclusion (i) Human metapneumovirus is a major viral pathogen in the Italian pediatric patient population; (ii) the severity of lower respiratory tract infections approaches that of human respiratory syncytial virus; (iii) there are preliminary indications that the duration of virus excretion may reach 2–3 weeks and that the level of viral load in NPA correlates with the clinical stage of human metapneumovirus infection.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Angel Balmaseda; Karin Stettler; Raquel Medialdea-Carrera; Damaris Collado; Xia Jin; José Victor Zambrana; Stefano Jaconi; Elisabetta Cameroni; Saira Saborio; Francesca Rovida; Elena Percivalle; Samreen Ijaz; Steve Dicks; Ines Ushiro-Lumb; Luisa Barzon; Patricia Siqueira; David Brown; Fausto Baldanti; Richard S Tedder; Maria Zambon; A.M. Bispo de Filippis; Eva Harris; Davide Corti
Significance Zika virus (ZIKV), a mosquito-borne flavivirus with homology to dengue virus (DENV), has become a public health threat, particularly because of its association with severe congenital birth defects. The high level of cross-reactivity among flaviviruses and their cocirculation has complicated serological approaches to detect ZIKV infections. Thus, there is an urgent need for a specific serological assay to discriminate ZIKV infection from other flaviviruses. This study demonstrates that the antibody-based assay we developed and implemented in five countries has high specificity and sensitivity in the detection of recent and past ZIKV infections. The ZIKV nonstructural protein 1 (NS1) blockade-of-binding ELISA assay is a simple, robust, and low-cost solution for Zika surveillance programs, seroprevalence studies, and intervention trials in flavivirus-endemic areas. Zika virus (ZIKV) is a mosquito-borne flavivirus that emerged recently as a global health threat, causing a pandemic in the Americas. ZIKV infection mostly causes mild disease, but is linked to devastating congenital birth defects and Guillain-Barré syndrome in adults. The high level of cross-reactivity among flaviviruses and their cocirculation has complicated serological approaches to differentially detect ZIKV and dengue virus (DENV) infections, accentuating the urgent need for a specific and sensitive serological test. We previously generated a ZIKV nonstructural protein 1 (NS1)-specific human monoclonal antibody, which we used to develop an NS1-based competition ELISA. Well-characterized samples from RT-PCR-confirmed patients with Zika and individuals exposed to other flavivirus infections or vaccination were used in a comprehensive analysis to determine the sensitivity and specificity of the NS1 blockade-of-binding (BOB) assay, which was established in laboratories in five countries (Nicaragua, Brazil, Italy, United Kingdom, and Switzerland). Of 158 sera/plasma from RT-PCR-confirmed ZIKV infections, 145 (91.8%) yielded greater than 50% inhibition. Of 171 patients with primary or secondary DENV infections, 152 (88.9%) scored negative. When the control group was extended to patients infected by other flaviviruses, other viruses, or healthy donors (n = 540), the specificity was 95.9%. We also analyzed longitudinal samples from DENV-immune and DENV-naive ZIKV infections and found inhibition was achieved within 10 d postonset of illness and maintained over time. Thus, the Zika NS1 BOB assay is sensitive, specific, robust, simple, low-cost, and accessible, and can detect recent and past ZIKV infections for surveillance, seroprevalence studies, and intervention trials.
Journal of Medical Virology | 2012
Antonio Piralla; Milena Furione; Francesca Rovida; Antonietta Marchi; Mauro Stronati; Giuseppe Gerna; Fausto Baldanti
Human parechoviruses (HPeVs) infection is associated with a wide range of clinical syndromes such as respiratory, gastrointestinal, neurologic diseases, and neonatal sepsis‐like illness. The main objective of this study was to investigate the epidemiology of HPeVs infection in hospitalized patients in a period of 2 years. Respiratory samples from 3,525 patients with respiratory syndrome, cerebrospinal fluid (CSF) from 340 patients with neurologic syndrome as well as CSF and plasma samples from five neonatal patients with sepsis‐like illness collected from October 2008 to 2010 were tested retrospectively using HPeV‐specific real‐time RT‐PCR. Phylogenetic analysis of VP3/VP1 region was performed on the positive samples. Fourteen out of 3,525 (0.4%) patients with respiratory syndrome and five out of five patients with sepsis‐like illness were positive for HPeV. In 3/5 patients with sepsis‐like illness multiple samples (e.g., stool, plasma, CSF, or respiratory samples) were available, and HPeV was found in all specimens. In contrast, no positive CSF was detected among the 340 patients with neurologic syndromes. Eleven patients (57.9%) were infected with HPeV1 strain, 7 (36.8%) with HPeV3, and 1 (5.3%) with HPeV6 strains. Ten of the 14 HPeV patients with respiratory syndrome were co‐infected with other respiratory viruses (eight with rhinovirus and two with coronavirus OC43). All five patients with sepsis‐like illness were less than 1 month of age and were infected with HPeV3. Although not circulating at high frequency and unlikely to cause respiratory syndrome, HPeV was associated with severe clinical syndromes in a minority of newborns. J. Med. Virol. 84:686–690, 2012.
Diagnostic Microbiology and Infectious Disease | 2013
Francesca Rovida; Giulia Campanini; Antonio Piralla; K.M.G. Adzasehoun; Antonella Sarasini; Fausto Baldanti
Abstract Gastrointestinal viral syndromes are a common cause of morbidity and mortality in humans worldwide. Etiological agents include a large number of viruses encompassing several orders, families, and genera. During the period April 2011 to April 2012, 689 stool samples from as many patients hospitalized at the Fondazione IRCCS Policlinico San Matteo of Pavia exhibiting gastrointestinal syndromes were examined for the presence of rotavirus, norovirus, astrovirus, adenovirus, rhinovirus, enterovirus, parechovirus, bocavirus, coronavirus, sapovirus, cosavirus, and aichi virus using polymerase chain reaction assays. Gastrointestinal viral agents were detected in 246 (36%) patients of the 689 analyzed. Adenovirus and norovirus were the most common viruses in this cohort, while aichi virus was the only gastrointestinal agent not detected. Surprisingly, rhinovirus was one of the most frequently detected viruses. However, a potential association with gastroenteritis remains to be confirmed.
Journal of Clinical Virology | 2007
Giulia Campanini; Elena Percivalle; Fausto Baldanti; Francesca Rovida; Alice Bertaina; Antonietta Marchi; Mauro Stronati; Giuseppe Gerna
Abstract Background Human respiratory syncytial virus (hRSV) detection in nasopharyngeal aspirates (NPAs) from infants with acute respiratory tract infection (ARTI) does not prove the hRSV etiology of the current ARTI episode. HRSV RNA quantification may help in affording this issue. Objectives hRSV was detected by quantitative reverse transcription-PCR in NPAs taken upon admission to hospital and, whenever possible, at discharge and subsequent medical visits. Study design Prospective study, including 63 infants affected by either hRSV upper or lower ARTI. Results Based on the kinetics of viral load, hRSV etiology was identified in 25 infants in whom hRSV load dropped from 2.5×106 upon admission (presence of respiratory symptoms) to 7.5×102 RNAcopies/ml NPA upon discharge (absence of symptoms) after a median time of 5 days, and in 19 infants, in whom hRSV load was determined at admission only, in association with clinical symptoms (2.4×106 copies/ml). Furthermore, low levels of hRSV RNA (<1×105 copies/ml NPA) identified 14 patients with non-hRSV ARTI. Finally, in 14 infants with hRSV coinfections or sequential infections, hRSV quantification defined the hRSV role in the current ARTI episode. Conclusions hRSV RNA quantification is critical in defining the hRSV role in respiratory infections.