Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Sargolini is active.

Publication


Featured researches published by Francesca Sargolini.


Nature Neuroscience | 2010

Grid cells in pre- and parasubiculum

Charlotte N. Boccara; Francesca Sargolini; Veslemøy Hult Thoresen; Trygve Solstad; Menno P. Witter; Edvard I. Moser; May-Britt Moser

Allocentric space is mapped by a widespread brain circuit of functionally specialized cell types located in interconnected subregions of the hippocampal-parahippocampal cortices. Little is known about the neural architectures required to express this variety of firing patterns. In rats, we found that one of the cell types, the grid cell, was abundant not only in medial entorhinal cortex (MEC), where it was first reported, but also in pre- and parasubiculum. The proportion of grid cells in pre- and parasubiculum was comparable to deep layers of MEC. The symmetry of the grid pattern and its relationship to the theta rhythm were weaker, especially in presubiculum. Pre- and parasubicular grid cells intermingled with head-direction cells and border cells, as in deep MEC layers. The characterization of a common pool of space-responsive cells in architecturally diverse subdivisions of parahippocampal cortex constrains the range of mechanisms that might give rise to their unique functional discharge phenotypes.


Cerebral Cortex | 2013

Distinct Roles of Medial and Lateral Entorhinal Cortex in Spatial Cognition

Tiffany Van Cauter; Jeremy Camon; Alice Alvernhe; Coralie Elduayen; Francesca Sargolini; Etienne Save

It is known that the entorhinal cortex plays a crucial role in spatial cognition in rodents. Neuroanatomical and electrophysiological data suggest that there is a functional distinction between 2 subregions within the entorhinal cortex, the medial entorhinal cortex (MEC), and the lateral entorhinal cortex (LEC). Rats with MEC or LEC lesions were trained in 2 navigation tasks requiring allothetic (water maze task) or idiothetic (path integration) information processing and 2-object exploration tasks allowing testing of spatial and nonspatial processing of intramaze objects. MEC lesions mildly affected place navigation in the water maze and produced a path integration deficit. They also altered the processing of spatial information in both exploration tasks while sparing the processing of nonspatial information. LEC lesions did not affect navigation abilities in both the water maze and the path integration tasks. They altered spatial and nonspatial processing in the object exploration task but not in the one-trial recognition task. Overall, these results indicate that the MEC is important for spatial processing and path integration. The LEC has some influence on both spatial and nonspatial processes, suggesting that the 2 kinds of information interact at the level of the EC.


Experimental Brain Research | 1998

N-methyl-D-aspartate and dopamine receptor involvement in the modulation of locomotor activity and memory processes

Walter Adriani; A. Felici; Francesca Sargolini; Pascal Roullet; A. Usiello; Alberto Oliverio; Andrea Mele

Abstract In this study we report on the effects of N-methyl-d-aspartate (NMDA)- and dopamine (DA)-receptor manipulation on the modulation of one-trial inhibitory avoidance response and the encoding of spatial information, as assessed with a non-associative task. Further, a comparison with the well-known effects of the manipulation of these two receptor systems on locomotor activity is outlined. It is well assessed that NMDA-receptor blockage induces a stimulatory action on locomotor activity similar to that exerted by DA agonists. There is evidence showing that the nucleus accumbens is involved in the response induced by both NMDA antagonists and DA agonists. We show results indicating a functional interaction between these two neural systems in modulating locomotor activity, with D2 DA-receptor antagonists (sulpiride and haloperidol) being more effective than the D1 antagonist (SCH 23390) in blocking MK-801-induced locomotion. A different profile is shown in the effects of NMDA antagonists and DA agonists in the modulation of memory processes. In one-trial inhibitory avoidance response, NMDA antagonists (MK-801 and CPP) impair the response on test day, while DA agonists exert a facilitatory effect; furthermore, sub-effective doses of both D1 (SKF 23390) and D2 (quinpirole) are able to attenuate the impairing effect in a way similar to that induced by NMDA antagonists. The effects of NMDA- and DA-acting drugs on the response to spatial novelty, as assessed with a task designed to study the ability of animals to react to discrete spatial changes, are in good accord with the effects observed on passive avoidance. The results show that NMDA as well as DA antagonists, at low doses, selectively impair the reactivity of mice to spatial changes. In a last series of experiments, the possible role of NMDA receptors located in the nucleus accumbens was investigated regarding reactivity to spatial novelty. The experiments gave apparently contrasting results: while showing an impairing effect of focal administrations of NMDA antagonists in the nucleus accumbens on reactivity to spatial novelty, no effect of ibotenic acid lesions of the same structure was observed.


Behavioural Brain Research | 2003

Effects of intra-accumbens focal administrations of glutamate antagonists on object recognition memory in mice.

Francesca Sargolini; Pascal Roullet; Alberto Oliverio; Andrea Mele

Generally recognition memory is distinguished into spatial and object memories that have been suggested to relay at a cortical level on different neural substrates. Recent studies point to a possible involvement of the nucleus accumbens (Nac) in spatial memory, demonstrating that blockade of glutamate antagonists within this structure impairs acquisition and consolidation of spatial information, while not many data are available on the potential role of this structure in object recognition. Thus in this study we wanted to investigate the effects of intra-accumbens focal administrations of NMDA antagonist, AP-5 (0.05, 0.1, 0.15 or 0.2 microg per side), and AMPA antagonist, DNQX (0.0005 or 0.001 microg per side), in object recognition memory. The spontaneous preference displayed by mice for novel objects was taken as an index for measuring object recognition. Pre-training focal administrations of both antagonists impaired the ability of mice to selectively explore the novel object in test session. However, the AMPA antagonist induced also a decrease in exploration and locomotion. In order to assess whether glutamate receptors located within the Nac were also involved in subsequent steps of object information processing, we performed additional experiments injecting AP-5 and DNQX immediately after training and testing the animals 24-h later. In this case, AP-5 but not the AMPA antagonist impaired exploration of the novel object. These results demonstrate that the Nac is involved in object recognition, and confirm that the different glutamate receptors mediate different component of information processing within the accumbens.


Psychopharmacology | 1998

N-Methyl-D-aspartate receptors in the nucleus accumbens⋅are involved in detection of spatial novelty in mice

Alessandro Usiello; Francesca Sargolini; Pascal Roullet; Martine Ammassari-Teule; Enrica Passino; Alberto Oliverio; Andrea Mele

Abstract The aim of this study was to investigate the role played by intra-accumbens N-methyl-D-aspartate (NMDA) receptors in spatial information encoding. For this purpose, the effect of local administration of both competitive (AP-5) and non-competitive (MK-801) NMDA antagonists was assessed in a task designed to estimate the ability of rodents to encode spatial relationships between discrete stimuli. The task consists of placing mice in an open field containing five objects and, after three sessions of habituation, examining their reactivity to object displacement (spatial novelty) and object substitution (object novelty). The results show that both doses of MK-801 (0.15 and 0.3 μg/side) induced a selective impairment in the capability of mice to detect spatial novelty. A similar effect was obtained by injecting the low dose of the competitive antagonist AP-5 (0.1 μg/side), whereas the high dose (0.15 μg/side) abolished detection of both spatial and object novelty. Taken together, these results show that intra-accumbens injections of low doses of competitive and non-competitive NMDA antagonists can produce selective deficits in processing spatial information resembling those observed after hippocampal damage. Moreover, the fact that pharmacological treatments spare memory processes involved in habituation suggests that NMDA antagonists may interfere with the formation of spatial representations rather than producing memory deficits per se.


Neuroscience | 1999

Effects of lesions to the glutamatergic afferents to the nucleus accumbens in the modulation of reactivity to spatial andnon-spatial novelty in mice

Francesca Sargolini; Pascal Roullet; Alberto Oliverio; Andrea Mele

The purpose of this study was to compare the effects of selective lesions of the three main sources of limbic afferents to the nucleus accumbens-fornix, prelimbic cortex and amygdala-with those induced by N-methyl-D-aspartate receptor blockage in this structure, in a non-associative task designed to estimate the ability of rodents to encode spatial and non-spatial relationships between discrete stimuli. The task consists of placing mice in an open field containing five objects and, after three sessions of habituation, examining their reactivity to object displacement (spatial novelty) and object substitution (object novelty). Focal administrations of the competitive N-methyl-D-aspartate antagonist DL-2-amino-5-phosphonopentanoic acid (0.1 microg/side) induced a selective impairment in the ability of mice to react to the spatial change. Lesions to the different structures affect the response of mice to spatial and non-spatial novelty in different ways. In particular, while fornix lesions induced a decrease in re-exploration of the displaced objects, prelimbic cortex lesions enhanced the exploration of both displaced and non-displaced objects. Finally, the basolateral amygdala lesions did not induce any impairment in the detection of the displaced objects but decreased the latencies to approach novel objects. It is concluded that N-methyl-D-aspartate receptor blockage in the nucleus accumbens subsumes the effects of the three lesions. Some hypotheses on the role of glutamatergic transmission in the accumbens on information processing are briefly discussed.


Behavioural Pharmacology | 2004

Nucleus accumbens dopamine receptors in the consolidation of spatial memory

Andrea Mele; M. Avena; Pascal Roullet; E. De Leonibus; S. Mandillo; Francesca Sargolini; Roberto Coccurello; Alberto Oliverio

Nucleus accumbens dopamine is known to play an important role in motor activity and in behaviours governed by drugs and natural reinforcers, as well as in non-associative forms of learning. At the same time, activation of D1 and D2 dopamine receptors has been suggested to promote intracellular events related to neural plasticity. Therefore, in this study we wished to investigate the role of the two classes of dopamine receptors within the nucleus accumbens on the consolidation of spatial information. On day 1, CD1 male mice were placed in an open field containing five different objects and, immediately after three sessions of habituation, the animals were focally injected within the nucleus accumbens with either the D1 antagonist SCH 23390 (12.5, 25 or 50 ng/side), or the D2 antagonist sulpiride (25, 50, 75 or 100 ng/side). Twenty-four hours later the ability of mice to discriminate an object displacement was assessed. Both the D1 and the D2 antagonists impaired the ability of mice to detect the spatial change. If the highest doses of the two antagonists were injected 2 h after the end of the last of the habituation sessions, no effect was observed in the reactivity to spatial change examined 24 h later. These data demonstrate that activation of both D1 and D2 receptors within the accumbens is necessary in the early stages of the consolidation of spatial information. The data are discussed in terms of involvement of nucleus accumbens dopamine in information processing in the absence of explicit reinforcers.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Ventral striatal plasticity and spatial memory

Valentina Ferretti; Pascal Roullet; Francesca Sargolini; Valentina Perri; Martina Del Fabbro; Vivian J. A. Costantini; Valentina Annese; Gianluigi Scesa; Maria Egle De Stefano; Alberto Oliverio; Andrea Mele

Spatial memory formation is a dynamic process requiring a series of cellular and molecular steps, such as gene expression and protein translation, leading to morphological changes that have been envisaged as the structural bases for the engram. Despite the role suggested for medial temporal lobe plasticity in spatial memory, recent behavioral observations implicate specific components of the striatal complex in spatial information processing. However, the potential occurrence of neural plasticity within this structure after spatial learning has never been investigated. In this study we demonstrate that blockade of cAMP response element binding protein–induced transcription or inhibition of protein synthesis or extracellular proteolytic activity in the ventral striatum impairs long-term spatial memory. These findings demonstrate that, in the ventral striatum, similarly to what happens in the hippocampus, several key molecular events crucial for the expression of neural plasticity are required in the early stages of spatial memory formation.


Behavioural Brain Research | 2007

Effects of intra-accumbens NMDA and AMPA receptor antagonists on short-term spatial learning in the Morris water maze task.

Valentina Ferretti; Francesca Sargolini; Alberto Oliverio; Andrea Mele; Pascal Roullet

Glutamatergic transmission within the nucleus accumbens (Nac) is considered to subserve the transfer of different types of information from the cortical and limbic regions. In particular, it has been suggested that glutamatergic afferences from the hippocampus and the prefrontal cortex provide the main source of contextual information to the Nac. Accordingly, several authors have demonstrated that the blockade of glutamate receptors within the Nac impairs various spatial tasks. However, the exact role of the different classes of glutamate receptors within the Nac in short-term spatial memory is still not clear. In this study we investigated the involvement of two major classes of glutamate receptors, NMDA and AMPA receptors, within the Nac in the acquisition of spatial information, using the Morris water maze task. Focal injections of the NMDA antagonist, AP-5 (0.1 and 0.15 microg/side), and the AMPA antagonist, DNQX (0.005, 0.01 microg/side), were performed before a massed training phase, and mice were tested for retention immediately after. NMDA and AMPA receptor blockade induced no effect during training. On the contrary, injection of the two glutamatergic antagonists impaired spatial localization during the probe test. These data demonstrate an involvement of the Nac in short-term spatial learning. Moreover, they prove that within this structure the short-term processing of spatial information needs the activation of both NMDA and AMPA receptors.


Frontiers in Integrative Neuroscience | 2014

Vestibular control of entorhinal cortex activity in spatial navigation

Pierre-Yves Jacob; Bruno Poucet; Martine Liberge; Etienne Save; Francesca Sargolini

Navigation in rodents depends on both self-motion (idiothetic) and external (allothetic) information. Idiothetic information has a predominant role when allothetic information is absent or irrelevant. The vestibular system is a major source of idiothetic information in mammals. By integrating the signals generated by angular and linear accelerations during exploration, a rat is able to generate and update a vector pointing to its starting place and to perform accurate return. This navigation strategy, called path integration, has been shown to involve a network of brain structures. Among these structures, the entorhinal cortex (EC) may play a pivotal role as suggested by lesion and electrophysiological data. In particular, it has been recently discovered that some neurons in the medial EC display multiple firing fields producing a regular grid-like pattern across the environment. Such regular activity may arise from the integration of idiothetic information. This hypothesis would be strongly strengthened if it was shown that manipulation of vestibular information interferes with grid cell activity. In the present paper we review neuroanatomical and functional evidence indicating that the vestibular system influences the activity of the brain network involved in spatial navigation. We also provide new data on the effects of reversible inactivation of the peripheral vestibular system on the EC theta rhythm. The main result is that tetrodotoxin (TTX) administration abolishes velocity-controlled theta oscillations in the EC, indicating that vestibular information is necessary for EC activity. Since recent data demonstrate that disruption of theta rhythm in the medial EC induces a disorganization of grid cell firing, our findings indicate that the integration of idiothetic information in the EC is essential to form a spatial representation of the environment.

Collaboration


Dive into the Francesca Sargolini's collaboration.

Top Co-Authors

Avatar

Alberto Oliverio

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Andrea Mele

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Pascal Roullet

Paul Sabatier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Etienne Save

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Coccurello

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Valentina Ferretti

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge