Francesca Satta
University of Genoa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesca Satta.
Journal of Propulsion and Power | 2014
Francesca Satta; Daniele Simoni; Marina Ubaldi; Pietro Zunino; Francesco Bertini
The suction side boundary-layer evolution in two ultra-high-lift low-pressure turbine blade cascades, characterized by the same Zweifel number but two different aerodynamic loading distributions, has been experimentally analyzed under steady and unsteady incoming flows. For the steady inflow case, a suction side boundary-layer separation has been detected for both cascades. Time-mean velocity and unresolved unsteadiness distributions have been exploited to survey the dynamics of the separated flow transition mode. The spectral analysis reveals that only the midloaded cascade is affected by a Kelvin–Helmholtz instability that induces the separated shear layer rollup, which provokes high losses. Results obtained for the unsteady case reveal that linear stability mechanisms drive the amplification of velocity fluctuations carried by wakes with dynamics similar to that characterizing the steady inflow condition. A rollup vortex has been found to be generated for both cascades as a consequence of the wake–shea...
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy | 2007
Francesca Satta; Daniele Simoni; Marina Ubaldi; Pietro Zunino; Francesco Bertini; Ennio Spano
Abstract The present paper reports the results of a detailed experimental study on low profile vortex generators (VGs) used to control boundary layer separation on a large-scale flat plate with prescribed adverse pressure gradients. This activity is part of a joint European research program on Aggressive Intermediate Duct Aerodynamics. The inlet turbulent boundary layer and the pressure gradient over the flat plate are representative of aggressive turbine intermediate ducts. By regulating the inclination of the wall opposite to the flat plate, different pressure gradients, typical of turbine intermediate ducts, can be obtained. To avoid separation on the movable wall, boundary layer suction is applied. Previous measurements showed the effectiveness of VGs in delaying separation and revealed their optimum configuration for the different prescribed pressure gradients. In the present work, laser Doppler velocimetry (LDV) is applied to the most significant pressure gradient case, in order to obtain a more thorough knowledge of the near-wall flow field. Velocity and turbulence profiles are determined up to the near-wall region in order to provide an in-depth analysis of turbulent boundary layer at separation conditions, with and without application of control devices. LDV allowed high spatial resolution and accurate statistical analysis of the boundary layer velocities. The results show velocity and turbulence profiles typical of separated turbulent boundary layers for the baseline case, and non-conventional unseparated boundary layer profiles when VGs are installed on the flat plate.
ASME Turbo Expo 2006: Power for Land, Sea, and Air | 2006
Edward Canepa; Davide Lengani; Francesca Satta; Ennio Spano; Marina Ubaldi; Pietro Zunino
The continuous tendency in modern aeroengine gas turbines towards reduction of blade count and ducts length may lead to aerodynamic loading increase beyond the limit of boundary layer separation. For this reason boundary layer separation control methods, up to now mostly employed in external aerodynamics, begin to be experimented in internal flows applications. The present paper reports the results of a detailed experimental study on low profile vortex generators used to control boundary layer separation on a large-scale flat plate with prescribed adverse pressure gradients. Inlet turbulent boundary layer conditions and pressure gradients are representative of aggressive turbine intermediate ducts. This activity is part of a joint European research program on Aggressive Intermediate Duct Aerodynamics (AIDA). The pressure gradients on the flat plate are generated by increasing the aperture angle of a movable wall opposite to the flat plate. To avoid separation on the movable wall, boundary layer suction is applied on it. Complementary measurements (surface static pressure distributions, surface flow visualizations by means of wall mounted tufts, instantaneous and time-averaged velocity fields in the meridional and cross-stream planes by means of Particle Image Velocimetry) have been used to survey the flow with and without vortex generators. Three different pressure gradients, which induce turbulent separation in absence of boundary layer control, were tested. Vortex generators height and location effects on separation reduction and pressure recovery increase were investigated. For the most effective VGs configurations detailed analyses of the flow field were performed, that demonstrate the effectiveness of this passive control device to control separation in diffusing ducts. Particle Image Velocimetry vector and vorticity plots illustrate the mechanisms by which the vortex generators transfer momentum towards the surface, re-energizing the near-wall flow and preserving the boundary layer from separation.Copyright
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition | 2015
Marco Berrino; Davide Lengani; Francesca Satta; Marina Ubaldi; Pietro Zunino; S. Colantuoni; P. Di Martino
The present paper is focused on the investigation of the dynamics of the flow downstream of an Ultra Low NOx (ULN) injection system, designed to reduce NOx emissions and combustor axial length. Two rectangular flame tubes have been experimentally investigated: one aimed at simulating an unconfined exit flow, and another with the same transverse dimensions of the combustor annular sector, to simulate the confined flow field. The effects induced by the realistic flame tube presence are investigated comparing the flow field with that generated in the unconfined case. Particular attention is paid to the vortex breakdown phenomena associated with the flow generated by the two co-rotating swirlers constituting the injection system.Two different and complementary measurement techniques have been adopted to characterize the aerodynamics of the vortex breakdown. The hot-wire investigation results reveal the frequencies associated with the precession motion due to the vortex breakdown. The Particle Image Velocimetry technique has been coupled with Proper Orthogonal Decomposition (POD) for data post-processing in order to reconstruct the swirling motion generated by the injection system. The property of POD, which consists of splitting temporal from spatial information of the flow field in analysis, allows the distinction between deterministic and random fluctuations without the need of an external trigger signal. This feature is fundamental for the better understanding of an highly-swirling flow.Copyright
ASME Turbo Expo 2010: Power for Land, Sea, and Air | 2010
Francesca Satta; Marina Ubaldi; Pietro Zunino; Claudia Schipani
Wake control by boundary layer suction has been applied to a high-lift low-pressure turbine blade with the intention of reducing the wake velocity defect, hence attenuating wake-blade interaction, and consequently the generation of tonal noise. The experimental investigation has been performed in a large scale linear turbine cascade at midspan. Two Reynolds number conditions (Re = 300000 and Re = 100000), representative of the typical operating conditions of the low pressure aeroengine turbines, have been analyzed. Boundary layer suction has been implemented through a slot placed in the rear part of the profile suction side. The suction rate has been varied in order to investigate its influence on the wake reduction. Mean velocity and Reynolds stress components in the blade to blade plane have been measured by means of a two-component crossed miniature hot-wire. The wake shed from the central blade has been investigated in several traverses in the direction normal to the camber line at the cascade exit. The traverses are located at distances ranging between 5 and 80% of the blade chord from the blade trailing edge. To get an overall estimate of the wake velocity defect reductions obtained by the application of boundary layer suction, the integral parameters of the wake have been also estimated. Moreover, spectra of the velocity fluctuations have been evaluated to get information on the unsteady behaviour of the wake flow when boundary layer suction is applied. The results obtained in the wake controlled by boundary layer suction have been compared with the results in the baseline profile wake at both Reynolds number conditions for the purpose of evaluating the control technique effectiveness. The removal of boundary layer through the slot in the rear part of the profile suction side has been proved to be very effective in reducing the wake shed from the profile. The results show that a reduction greater than 65% of the wake displacement and momentum thicknesses at Re = 300000, and a reduction greater than 75% at Re = 100000 can be achieved by removal of 1.5% and 1.8% of the single passage through flow, respectively.Copyright
ASME Turbo Expo 2009: Power for Land, Sea, and Air | 2009
Francesca Satta; Daniele Simoni; Marina Ubaldi; Pietro Zunino; Francesco Bertini
The boundary layer development on the suction side of a high-lift LP turbine profile has been experimentally investigated under steady and unsteady flow conditions in the range of Reynolds numbers between 70000 and 300000. Upstream wake periodic perturbations are generated by means of a tangential wheel of radial rods. The paper reports the results of the investigations performed for both steady and unsteady inflow cases (reduced frequency f+ = 0.62) for Re = 300000 and Re = 70000, representative of nominal and reduced Reynolds number operating conditions, respectively. A phase-locked ensemble-averaging technique has been employed to reconstruct the phase-averaged velocity and unresolved unsteadiness boundary layer profiles from the hotwire instantaneous velocities. Phase sequences of the boundary layer development, as well as time-space plots of velocity and unresolved unsteadiness in normal and streamwise directions highlight the complex wake/boundary layer interaction mechanism. While at the larger test Reynolds number the wake/boundary layer interaction does not substantially influence the transition process, at the lower test Reynolds number the boundary layer wake receptivity triggers the transition process, strongly attenuating the large separation bubble occurring at steady conditions.Copyright
Heat Transfer Engineering | 2017
Luca Baggetta; Francesca Satta; Giovanni Tanda
ABSTRACT Ribbing the internal passages of turbine blades with 45 deg inclined ribs is a common practice to achieve a good compromise between high heat transfer coefficients and not too large pressure drop penalties. Literature studies demonstrated that, for channels having a large aspect ratio, the effect of the secondary vortices induced by angled ribs is reduced and the heat transfer performance is degraded. In order to enhance the performance, a possible strategy consists in introducing one or more longitudinal ribs (intersecting ribs) aligned to the main direction of flow. The intersecting ribs cut the ribbed channel into separate sub-channels and markedly affect the secondary flows with consequent increases in heat transfer performance. Experiments were performed for a rectangular channel with a large aspect ratio (equal to five) and 45 deg inclined ribs, regularly spaced on one of the principal walls of the channel. The effect of one and two intersecting ribs on friction and heat transfer characteristics has been investigated. The ribbed surface of the channel has been electrically heated to provide a uniform heat flux condition over each inter-rib region. The convective fluid was air. Heat transfer experiments have been conducted by using the liquid crystal thermography. Results obtained for the ribbed channel without intersecting rib and with one/two intersecting ribs are compared in terms of dimensionless groups.
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition | 2015
Daniele Infantino; Francesca Satta; Daniele Simoni; Marina Ubaldi; Pietro Zunino; Francesco Bertini
The present work describes the experimental investigations carried out at the Aerodynamics and Turbomachinery Laboratory of Genoa University aimed at characterizing the unsteady features of the secondary flows in a High-Lift Low Pressure Turbine cascade perturbed by incoming wakes. The investigations have been carried out at the nominal exit flow Reynolds number of 300000 in a 5-blade large-scale linear cascade. Hot-wire phase-locked ensemble-averaging technique has been applied to analyze in depth the time-dependent velocity and turbulence intensity distributions in a downstream tangential plane during a wake period. A multiple rotation technique has been used in order to measure the three velocity components as well as the Reynolds stress tensor terms. Acquired data are presented in terms of the phase-dependent mean velocity, turbulence and vorticity maps in order to distinguish between the contributions due to incoming wake velocity defect and those due to the turbulence carried by wakes on the phase-dependent secondary flow structures. Results clearly highlight a significant distortion and weakening of the passage vortex when the upstream wake passes through the measuring domain. Also an evident displacement of the passage vortex position has been observed in the wake period. This analysis allows understanding the difference in the three dimensional time mean structures of the exit flow field between the steady and unsteady operations.Copyright
Journal of Thermal Science | 2010
Francesca Satta; Daniele Simoni; Marina Ubaldi; Pietro Zunino; Francesco Bertini
Applied Thermal Engineering | 2015
Francesca Satta; Giovanni Tanda