Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Simonelli is active.

Publication


Featured researches published by Francesca Simonelli.


The Lancet | 2009

Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial

Albert M. Maguire; Katherine A. High; Alberto Auricchio; J. Fraser Wright; Eric A. Pierce; Francesco Testa; Federico Mingozzi; Jeannette L. Bennicelli; Gui-shuang Ying; Settimio Rossi; Ann Fulton; Kathleen Marshall; Sandro Banfi; Daniel C. Chung; Jessica I. W. Morgan; Bernd Hauck; Olga Zelenaia; Xiaosong Zhu; Leslie Raffini; Frauke Coppieters; Elfride De Baere; Kenneth S. Shindler; Nicholas J. Volpe; Enrico Maria Surace; Carmela Acerra; Arkady Lyubarsky; T. Michael Redmond; Edwin M. Stone; Junwei Sun; Jenni Fer Uvellman Mcdonnell

BACKGROUND Gene therapy has the potential to reverse disease or prevent further deterioration of vision in patients with incurable inherited retinal degeneration. We therefore did a phase 1 trial to assess the effect of gene therapy on retinal and visual function in children and adults with Lebers congenital amaurosis. METHODS We assessed the retinal and visual function in 12 patients (aged 8-44 years) with RPE65-associated Lebers congenital amaurosis given one subretinal injection of adeno-associated virus (AAV) containing a gene encoding a protein needed for the isomerohydrolase activity of the retinal pigment epithelium (AAV2-hRPE65v2) in the worst eye at low (1.5 x 10(10) vector genomes), medium (4.8 x 10(10) vector genomes), or high dose (1.5 x 10(11) vector genomes) for up to 2 years. FINDINGS AAV2-hRPE65v2 was well tolerated and all patients showed sustained improvement in subjective and objective measurements of vision (ie, dark adaptometry, pupillometry, electroretinography, nystagmus, and ambulatory behaviour). Patients had at least a 2 log unit increase in pupillary light responses, and an 8-year-old child had nearly the same level of light sensitivity as that in age-matched normal-sighted individuals. The greatest improvement was noted in children, all of whom gained ambulatory vision. The study is registered with ClinicalTrials.gov, number NCT00516477. INTERPRETATION The safety, extent, and stability of improvement in vision in all patients support the use of AAV-mediated gene therapy for treatment of inherited retinal diseases, with early intervention resulting in the best potential gain. FUNDING Center for Cellular and Molecular Therapeutics at the Childrens Hospital of Philadelphia, Foundation Fighting Blindness, Telethon, Research to Prevent Blindness, F M Kirby Foundation, Mackall Foundation Trust, Regione Campania Convenzione, European Union, Associazione Italiana Amaurosi Congenita di Leber, Fund for Scientific Research, Fund for Research in Ophthalmology, and National Center for Research Resources.


Molecular Therapy | 2010

Gene Therapy for Leber's Congenital Amaurosis is Safe and Effective Through 1.5 Years After Vector Administration

Francesca Simonelli; Albert M. Maguire; Francesco Testa; Eric A. Pierce; Federico Mingozzi; Jeannette L. Bennicelli; Settimio Rossi; Kathleen Marshall; Sandro Banfi; Enrico Maria Surace; Junwei Sun; T. Michael Redmond; Xiaosong Zhu; Kenneth S. Shindler; Gui-shuang Ying; Carmela Ziviello; Carmela Acerra; J. Fraser Wright; Jennifer Wellman McDonnell; Katherine A. High; Jean Bennett; Alberto Auricchio

The safety and efficacy of gene therapy for inherited retinal diseases is being tested in humans affected with Lebers congenital amaurosis (LCA), an autosomal recessive blinding disease. Three independent studies have provided evidence that the subretinal administration of adeno-associated viral (AAV) vectors encoding RPE65 in patients affected with LCA2 due to mutations in the RPE65 gene, is safe and, in some cases, results in efficacy. We evaluated the long-term safety and efficacy (global effects on retinal/visual function) resulting from subretinal administration of AAV2-hRPE65v2. Both the safety and the efficacy noted at early timepoints persist through at least 1.5 years after injection in the three LCA2 patients enrolled in the low dose cohort of our trial. A transient rise in neutralizing antibodies to AAV capsid was observed but there was no humoral response to RPE65 protein. The persistence of functional amelioration suggests that AAV-mediated gene transfer to the human retina does not elicit immunological responses which cause significant loss of transduced cells. The persistence of physiologic effect supports the possibility that gene therapy may influence LCA2 disease progression. The safety of the intervention and the stability of the improvement in visual and retinal function in these subjects support the use of AAV-mediated gene augmentation therapy for treatment of inherited retinal diseases.


Science Translational Medicine | 2012

AAV2 Gene Therapy Readministration in Three Adults with Congenital Blindness

Jean Bennett; Manzar Ashtari; Jennifer Wellman; Kathleen Marshall; Laura Cyckowski; Daniel C. Chung; Sarah McCague; Eric A. Pierce; Yong Chen; Jeannette L. Bennicelli; Xiaosong Zhu; Gui-shuang Ying; Junwei Sun; John Fraser Wright; Alberto Auricchio; Francesca Simonelli; Kenneth S. Shindler; Federico Mingozzi; Katherine A. High; Albert M. Maguire

Repeat administration of gene therapy to the contralateral retina of three congenitally blind patients was safe and resulted in improved vision. Shining a Light with Gene Therapy Gene therapy has great potential for treating certain diseases by providing therapeutic genes to target cells. Administration of a gene therapy vector carrying the RPE65 gene in 12 patients with congenital blindness due to RPE65 mutations led to improvements in retinal and visual function and proved to be a safe and stable procedure. In a follow-up study, the same group of researchers led by Jean Bennett set out to discover whether it would be possible to safely administer the vector and the therapeutic transgene to the contralateral eye of the patients. A big concern was whether the first gene therapy injection might have primed the patients’ immune system to respond to the adeno-associated virus (AAV) vector or the product of the therapeutic transgene that it had delivered. To test the safety and efficacy of a second administration of gene therapy to the second eye, the authors demonstrated that readministration was both safe and effective in animal models. Then, they selected 3 of the original 12 patients and readministered the AAV vector and its RPE65 transgene to the contralateral eye. They assessed safety by evaluating inflammatory responses, immune reactions, and extraocular exposure to the AAV vector. Efficacy was assessed through qualitative and quantitative measures of retinal and visual function including the ability to read letters, the extent of side vision, light sensitivity, the pupillary light reflex, the ability to navigate in dim light, and evidence from neuroimaging studies of cortical activation (which demonstrated that signals from the retina were recognized by the brain). The researchers did not discover any safety concerns and did not identify harmful immune responses to the vector or the transgene product. Before and after comparisons of psychophysical data and cortical responses provided the authors with evidence that gene therapy readministration was effective and mediated improvements in retinal and visual function in the three patients. The researchers report that the lack of immune response and the robust safety profile in this readministration gene therapy study may be due in part to the immune-privileged nature of the eye, and the low dose and very pure preparation of the AAV vector. Demonstration of safe and stable reversal of blindness after a single unilateral subretinal injection of a recombinant adeno-associated virus (AAV) carrying the RPE65 gene (AAV2-hRPE65v2) prompted us to determine whether it was possible to obtain additional benefit through a second administration of the AAV vector to the contralateral eye. Readministration of vector to the second eye was carried out in three adults with Leber congenital amaurosis due to mutations in the RPE65 gene 1.7 to 3.3 years after they had received their initial subretinal injection of AAV2-hRPE65v2. Results (through 6 months) including evaluations of immune response, retinal and visual function testing, and functional magnetic resonance imaging indicate that readministration is both safe and efficacious after previous exposure to AAV2-hRPE65v2.


Ophthalmology | 2013

Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2.

Francesco Testa; Albert M. Maguire; Settimio Rossi; Eric A. Pierce; Paolo Melillo; Kathleen Marshall; Sandro Banfi; Enrico Maria Surace; Junwei Sun; Carmela Acerra; J. Fraser Wright; Jennifer Wellman; Katherine A. High; Alberto Auricchio; Jean Bennett; Francesca Simonelli

OBJECTIVE The aim of this study was to show the clinical data of long-term (3-year) follow-up of 5 patients affected by Leber congenital amaurosis type 2 (LCA2) treated with a single unilateral injection of adeno-associated virus AAV2-hRPE65v2. DESIGN Clinical trial. PARTICIPANTS Five LCA2 patients with RPE65 gene mutations. METHODS After informed consent and confirmation of trial eligibility criteria, the eye with worse visual function was selected for subretinal delivery of adeno-associated virus (AAV2-hRPE65v2). Subjects were evaluated before and after surgery at designated follow-up visits (1, 2, 3, 14, 30, 60, 90, 180, 270, and 365 days, 1.5 years, and 3 years) by complete ophthalmic examination. Efficacy for each subject was monitored with best-corrected visual acuity, kinetic visual field, nystagmus testing, and pupillary light reflex. MAIN OUTCOME MEASURES Best-corrected visual acuity, kinetic visual field, nystagmus testing, and pupillary light reflex. RESULTS The data showed a statistically significant improvement of best-corrected visual acuity between baseline and 3 years after treatment in the treated eye (P<0.001). In all patients, an enlargement of the area of visual field was observed that remained stable until 3 years after injection (average values: baseline, 1058 deg(2) vs. 3 years after treatment, 4630 deg(2)) and a reduction of the nystagmus frequency compared with baseline at the 3-year time point. Furthermore, a statistically significant difference was observed in the pupillary constriction of the treated eye (P<0.05) compared with the untreated eye in 3 patients at 1- and 3-year time points. No patients experienced serious adverse events related to the vector in the 3-year postinjection period. CONCLUSIONS The long-term follow-up data (3 years) on the 5-patient Italian cohort involved in the LCA2 gene therapy clinical trial clearly showed a stability of improvement in visual and retinal function that had been achieved a few months after treatment. Longitudinal data analysis showed that the maximum improvement was achieved within 6 months after treatment, and the visual improvement was stable up to the last observed time point. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.


Brain | 2011

Idebenone Treatment In Leber's Hereditary Optic Neuropathy

Valerio Carelli; Chiara La Morgia; Maria Lucia Valentino; Giovanni Rizzo; Michele Carbonelli; Anna Maria De Negri; F. Sadun; Arturo Carta; Silvana Guerriero; Francesca Simonelli; Alfredo A. Sadun; Divya Aggarwal; Rocco Liguori; Patrizia Avoni; Agostino Baruzzi; Massimo Zeviani; Pasquale Montagna; Piero Barboni

Sir, We have read with great interest the results presented by Klopstock et al. (2011) concerning the RHODOS study on a clinical trial with idebenone in Lebers hereditary optic neuropathy (LHON) and we would like to share our own experience of idebenone therapy in LHON. Idebenone has been an approved drug (Mnesis®, Takeda Italia Farmaceutici) in Italy since the early 1990s and, after the initial report by Mashima et al . (1992) on its possible efficacy in LHON, we offered this therapeutic option to all of our new consecutive patients with LHON, almost all of whom accepted treatment. Idebenone was given after informed consent following the regulation for ‘off-label’ drug administration and was provided for free by the National Health Service, under the legislation for certified rare disorders. Patients were initially treated with 270 mg/day (Cortelli et al ., 1997; Carelli et al ., 1998 a , b ), but following the reports on idebenone treatment in Friedreich ataxia, the dosages were increased to 540–675 mg/day (Rustin et al ., 1999; Kearney et al ., 2009). To evaluate retrospectively the efficacy of idebenone therapy, we reviewed all of our patients with LHON, idebenone treated and untreated, after approval of the institutional Internal Review Board. Inclusion criteria for treated patients were the initiation of therapy within 1 year after visual loss in the second eye, and for all patients (treated and untreated) age at onset of at least 10 years and a follow-up of at least 5 years. We included only patients treated within 1 year after onset because this is the time frame to reach the nadir of the visual loss and the probability of spontaneous recovery of vision is highest in the following 5 years (Nikoskelainen et al ., 1983; Barboni et al ., 2005, 2010; …


Journal of Clinical Investigation | 2011

The human visual cortex responds to gene therapy-mediated recovery of retinal function.

Manzar Ashtari; Laura Cyckowski; Justin F. Monroe; Kathleen Marshall; Daniel C. Chung; Alberto Auricchio; Francesca Simonelli; Bart P. Leroy; Albert M. Maguire; Kenneth S. Shindler; Jean Bennett

Leber congenital amaurosis (LCA) is a rare degenerative eye disease, linked to mutations in at least 14 genes. A recent gene therapy trial in patients with LCA2, who have mutations in RPE65, demonstrated that subretinal injection of an adeno-associated virus (AAV) carrying the normal cDNA of that gene (AAV2-hRPE65v2) could markedly improve vision. However, it remains unclear how the visual cortex responds to recovery of retinal function after prolonged sensory deprivation. Here, 3 of the gene therapy trial subjects, treated at ages 8, 9, and 35 years, underwent functional MRI within 2 years of unilateral injection of AAV2-hRPE65v2. All subjects showed increased cortical activation in response to high- and medium-contrast stimuli after exposure to the treated compared with the untreated eye. Furthermore, we observed a correlation between the visual field maps and the distribution of cortical activations for the treated eyes. These data suggest that despite severe and long-term visual impairment, treated LCA2 patients have intact and responsive visual pathways. In addition, these data suggest that gene therapy resulted in not only sustained and improved visual ability, but also enhanced contrast sensitivity.


Ophthalmic Research | 2001

Apolipoprotein E polymorphisms in age-related macular degeneration in an Italian population.

Francesca Simonelli; Maurizio Margaglione; Francesco Testa; Giuseppe Cappucci; Maria Pia Manitto; Rosario Brancato; Ernesto Rinaldi

Objective: Apolipoprotein E (apoE) is an important regulator of cholesterol and lipid transport during compensatory synaptogenesis. Our purpose was to investigate the role of apoE gene polymorphisms in Italian patients with age-related macular degeneration (AMD). Methods: We used the polymerase chain reaction technique to analyze apoE genotypes in 87 patients with AMD, in 47 age-matched controls and in 1,287 individuals from a general reference population. Results: The frequency of allele Ε4 carriers was significantly higher (p = 0.002) in the general population than in AMD patients, while the frequency of allele Ε2 was higher in the patients (p = 0.069) with an increased risk for AMD in the patients versus the population-based controls (odds ratio = 1.7; 95% confidence interval: 1.0–2.9). Allele Ε4 was associated with a decreased risk for AMD in the patients versus the population-based controls (odds ratio = 0.3; 95% confidence interval: 0.1–0.8). Clinical Relevance: These data suggest that apoE testing may represent a tool for the evaluation of the relative risk of AMD. Consequently, a preventive strategy can be initiated at an early stage of the disorder. Conclusion: The apoE gene polymorphism showed a significant association with the risk of AMD. The lower frequency of the Ε4 allele in AMD patients suggests that the apoE gene could play a protective role in the pathogenesis of the disease. In contrast, the Ε2 allele was found associated with a slightly increased risk of AMD, although we did not find a statistically significant effect.


The Lancet | 2017

Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial

Stephen R. Russell; Jean Bennett; Jennifer Wellman; Daniel C. Chung; Zi Fan Yu; Amy Tillman; Janet Wittes; Julie Pappas; Okan Elci; Sarah McCague; Dominique Cross; Kathleen Marshall; Jean Walshire; Taylor Kehoe; Hannah Reichert; Maria C. Davis; Leslie Raffini; Lindsey A. George; F. Parker Hudson; Laura Dingfield; Xiaosong Zhu; Julia A. Haller; Elliott H. Sohn; Vinit B. Mahajan; Wanda Pfeifer; Michelle T. Weckmann; Chris A. Johnson; Dina Y. Gewaily; Arlene V. Drack; Edwin M. Stone

BACKGROUND Phase 1 studies have shown potential benefit of gene replacement in RPE65-mediated inherited retinal dystrophy. This phase 3 study assessed the efficacy and safety of voretigene neparvovec in participants whose inherited retinal dystrophy would otherwise progress to complete blindness. METHODS In this open-label, randomised, controlled phase 3 trial done at two sites in the USA, individuals aged 3 years or older with, in each eye, best corrected visual acuity of 20/60 or worse, or visual field less than 20 degrees in any meridian, or both, with confirmed genetic diagnosis of biallelic RPE65 mutations, sufficient viable retina, and ability to perform standardised multi-luminance mobility testing (MLMT) within the luminance range evaluated, were eligible. Participants were randomly assigned (2:1) to intervention or control using a permuted block design, stratified by age (<10 years and ≥10 years) and baseline mobility testing passing level (pass at ≥125 lux vs <125 lux). Graders assessing primary outcome were masked to treatment group. Intervention was bilateral, subretinal injection of 1·5 × 1011 vector genomes of voretigene neparvovec in 0·3 mL total volume. The primary efficacy endpoint was 1-year change in MLMT performance, measuring functional vision at specified light levels. The intention-to-treat (ITT) and modified ITT populations were included in primary and safety analyses. This trial is registered with ClinicalTrials.gov, number NCT00999609, and enrolment is complete. FINDINGS Between Nov 15, 2012, and Nov 21, 2013, 31 individuals were enrolled and randomly assigned to intervention (n=21) or control (n=10). One participant from each group withdrew after consent, before intervention, leaving an mITT population of 20 intervention and nine control participants. At 1 year, mean bilateral MLMT change score was 1·8 (SD 1·1) light levels in the intervention group versus 0·2 (1·0) in the control group (difference of 1·6, 95% CI 0·72-2·41, p=0·0013). 13 (65%) of 20 intervention participants, but no control participants, passed MLMT at the lowest luminance level tested (1 lux), demonstrating maximum possible improvement. No product-related serious adverse events or deleterious immune responses occurred. Two intervention participants, one with a pre-existing complex seizure disorder and another who experienced oral surgery complications, had serious adverse events unrelated to study participation. Most ocular events were mild in severity. INTERPRETATION Voretigene neparvovec gene replacement improved functional vision in RPE65-mediated inherited retinal dystrophy previously medically untreatable. FUNDING Spark Therapeutics.


Journal of Medical Genetics | 2006

Development of a genotyping microarray for Usher syndrome

Frans P.M. Cremers; William J. Kimberling; Maigi Külm; Arjan P.M. de Brouwer; Erwin van Wijk; Heleen Te Brinke; C.W.R.J. Cremers; Lies H. Hoefsloot; Sandro Banfi; Francesca Simonelli; Johannes Fleischhauer; Wolfgang Berger; Phil M. Kelley; Elene Haralambous; Maria Bitner-Glindzicz; Andrew R. Webster; Zubin Saihan; Elfride De Baere; Bart P. Leroy; Giuliana Silvestri; Gareth J. McKay; Robert K. Koenekoop; José M. Millán; Thomas Rosenberg; Tarja Joensuu; E.-M. Sankila; Dominique Weil; Michael D. Weston; Bernd Wissinger; Hannie Kremer

Background: Usher syndrome, a combination of retinitis pigmentosa (RP) and sensorineural hearing loss with or without vestibular dysfunction, displays a high degree of clinical and genetic heterogeneity. Three clinical subtypes can be distinguished, based on the age of onset and severity of the hearing impairment, and the presence or absence of vestibular abnormalities. Thus far, eight genes have been implicated in the syndrome, together comprising 347 protein-coding exons. Methods: To improve DNA diagnostics for patients with Usher syndrome, we developed a genotyping microarray based on the arrayed primer extension (APEX) method. Allele-specific oligonucleotides corresponding to all 298 Usher syndrome-associated sequence variants known to date, 76 of which are novel, were arrayed. Results: Approximately half of these variants were validated using original patient DNAs, which yielded an accuracy of >98%. The efficiency of the Usher genotyping microarray was tested using DNAs from 370 unrelated European and American patients with Usher syndrome. Sequence variants were identified in 64/140 (46%) patients with Usher syndrome type I, 45/189 (24%) patients with Usher syndrome type II, 6/21 (29%) patients with Usher syndrome type III and 6/20 (30%) patients with atypical Usher syndrome. The chip also identified two novel sequence variants, c.400C>T (p.R134X) in PCDH15 and c.1606T>C (p.C536S) in USH2A. Conclusion: The Usher genotyping microarray is a versatile and affordable screening tool for Usher syndrome. Its efficiency will improve with the addition of novel sequence variants with minimal extra costs, making it a very useful first-pass screening tool.


British Journal of Ophthalmology | 2006

Polymorphism p.402Y>H in the complement factor H protein is a risk factor for age related macular degeneration in an Italian population

Francesca Simonelli; Giulia Frisso; Francesco Testa; R. Di Fiore; Dino Franco Vitale; Maria Pia Manitto; Rosario Brancato; E. Rinaldi; Lucia Sacchetti

Aims: To evaluate the complement factor H (CFH) p.402Y>H polymorphism as a risk factor in age related macular degeneration (AMD) in an Italian population. Methods: 104 unrelated Italian AMD patients and 131 unrelated controls were screened for the CFH polymorphism p.402Y>H (c.1277 T>C), which has been associated with AMD. Retinography was obtained for patients and controls; the AMD diagnosis was confirmed by fluorescein angiograms. The c.1277 T>C polymorphism was genotyped with the TaqMan real time polymerase chain reaction single nucleotide polymorphism assay. Results: The frequency of c.1277C allele was higher in AMD patients than in controls (57.2% v 39.3%; p<0.001). The odds ratio (OR; logistic regression analysis) for AMD was 3.9 (95% confidence interval (CI): 1.9 to 8.2) for CC homozygotes. The CC genotype conferred a higher risk for sporadic (OR 4.6; CI: 2.0 to 10.5) than for familial AMD (OR 2.9; CI: 1.0 to 8.4). Genotypes were not related to either age at AMD diagnosis or to AMD phenotype. However, geographic atrophy and choroidal neovascularisation were more frequent in sporadic than in familial AMD (p = 0.027). Overall, the percentage of population attributable risk for the CC genotype was 28% (95% CI:18% to 33%). Conclusion: The association between the p.402Y>H (c.1277T>C) polymorphism and AMD applies to the Italian population and the CC genotype is more frequent in sporadic than in familial AMD cases.

Collaboration


Dive into the Francesca Simonelli's collaboration.

Top Co-Authors

Avatar

Francesco Testa

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Settimio Rossi

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Sandro Banfi

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Ernesto Rinaldi

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Paolo Melillo

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Valentina Di Iorio

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Ada Orrico

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Alberto Auricchio

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

A. Nesti

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Michele Della Corte

Seconda Università degli Studi di Napoli

View shared research outputs
Researchain Logo
Decentralizing Knowledge