Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Sparla is active.

Publication


Featured researches published by Francesca Sparla.


Frontiers in Plant Science | 2013

Redox regulation of the Calvin–Benson cycle: something old, something new

Laure Michelet; Mirko Zaffagnini; Samuel Morisse; Francesca Sparla; María Esther Pérez-Pérez; Francesco Francia; Antoine Danon; Christophe Marchand; Simona Fermani; Paolo Trost; Stéphane D. Lemaire

Reversible redox post-translational modifications such as oxido-reduction of disulfide bonds, S-nitrosylation, and S-glutathionylation, play a prominent role in the regulation of cell metabolism and signaling in all organisms. These modifications are mainly controlled by members of the thioredoxin and glutaredoxin families. Early studies in photosynthetic organisms have identified the Calvin–Benson cycle, the photosynthetic pathway responsible for carbon assimilation, as a redox regulated process. Indeed, 4 out of 11 enzymes of the cycle were shown to have a low activity in the dark and to be activated in the light through thioredoxin-dependent reduction of regulatory disulfide bonds. The underlying molecular mechanisms were extensively studied at the biochemical and structural level. Unexpectedly, recent biochemical and proteomic studies have suggested that all enzymes of the cycle and several associated regulatory proteins may undergo redox regulation through multiple redox post-translational modifications including glutathionylation and nitrosylation. The aim of this review is to detail the well-established mechanisms of redox regulation of Calvin–Benson cycle enzymes as well as the most recent reports indicating that this pathway is tightly controlled by multiple interconnected redox post-translational modifications. This redox control is likely allowing fine tuning of the Calvin–Benson cycle required for adaptation to varying environmental conditions, especially during responses to biotic and abiotic stresses.


Journal of Experimental Botany | 2011

Thioredoxin-regulated β-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress

Concetta Valerio; Alex Costa; Lucia Marri; Emmanuelle Issakidis-Bourguet; Paolo Pupillo; Paolo Trost; Francesca Sparla

BAM1 is a plastid-targeted β-amylase of Arabidopsis thaliana specifically activated by reducing conditions. Among eight different chloroplast thioredoxin isoforms, thioredoxin f1 was the most efficient redox mediator, followed by thioredoxins m1, m2, y1, y2, and m4. Plastid-localized NADPH-thioredoxin reductase (NTRC) was also able partially to restore the activity of oxidized BAM1. Promoter activity of BAM1 was studied by reporter gene expression (GUS and YFP) in Arabidopsis transgenic plants. In young (non-flowering) plants, BAM1 was expressed both in leaves and roots, but expression in leaves was mainly restricted to guard cells. Compared with wild-type plants, bam1 knockout mutants were characterized by having more starch in illuminated guard cells and reduced stomata opening, suggesting that thioredoxin-regulated BAM1 plays a role in diurnal starch degradation which sustains stomata opening. Besides guard cells, BAM1 appears in mesophyll cells of young plants as a result of a strongly induced gene expression under osmotic stress, which is paralleled by an increase in total β-amylase activity together with its redox-sensitive fraction. Osmotic stress impairs the rate of diurnal starch accumulation in leaves of wild-type plants, but has no effect on starch accumulation in bam1 mutants. It is proposed that thioredoxin-regulated BAM1 activates a starch degradation pathway in illuminated mesophyll cells upon osmotic stress, similar to the diurnal pathway of starch degradation in guard cells that is also dependent on thioredoxin-regulated BAM1.


ACS Nano | 2014

C60@Lysozyme: Direct Observation by Nuclear Magnetic Resonance of a 1:1 Fullerene Protein Adduct

Matteo Calvaresi; Fabio Arnesano; Sara Bonacchi; Andrea Bottoni; Vincenza Calò; Stefano Conte; Giuseppe Falini; Simona Fermani; Maurizio Losacco; Marco Montalti; Giovanni Natile; Luca Prodi; Francesca Sparla; Francesco Zerbetto

Integrating carbon nanoparticles (CNPs) with proteins to form hybrid functional assemblies is an innovative research area with great promise for medical, nanotechnology, and materials science. The comprehension of CNP-protein interactions requires the still-missing identification and characterization of the binding pocket for the CNPs. Here, using Lysozyme and C60 as model systems and NMR chemical shift perturbation analysis, a protein-CNP binding pocket is identified unambiguously in solution and the effect of the binding, at the level of the single amino acid, is characterized by a variety of experimental and computational approaches. Lysozyme forms a stoichiometric 1:1 adduct with C60 that is dispersed monomolecularly in water. Lysozyme maintains its tridimensional structure upon interaction with C60 and only a few identified residues are perturbed. The C60 recognition is highly specific and localized in a well-defined pocket.


Journal of Biological Chemistry | 2012

Conformational Selection and Folding-upon-binding of Intrinsically Disordered Protein CP12 Regulate Photosynthetic Enzymes Assembly.

Simona Fermani; Xavier Trivelli; Francesca Sparla; Anton Thumiger; Matteo Calvaresi; Lucia Marri; Giuseppe Falini; Francesco Zerbetto; Paolo Trost

Background: In the dark CP12 is oxidized and regulates photosynthetic GAPDH. Results: The disordered C terminus of oxidized CP12 gets ordered when bound to GAPDH. Conclusion: Transient complexes between GAPDH and selected conformations of CP12 evolve into a stable binary complex in which CP12 blocks GAPDH catalytic sites. Significance: Disordered proteins can bind structured partners through a synergistic combination of conformational selection and folding-upon-binding. Carbon assimilation in plants is regulated by the reduction of specific protein disulfides by light and their re-oxidation in the dark. The redox switch CP12 is an intrinsically disordered protein that can form two disulfide bridges. In the dark oxidized CP12 forms an inactive supramolecular complex with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase, two enzymes of the carbon assimilation cycle. Here we show that binding of CP12 to GAPDH, the first step of ternary complex formation, follows an integrated mechanism that combines conformational selection with induced folding steps. Initially, a CP12 conformation characterized by a circular structural motif including the C-terminal disulfide is selected by GAPDH. Subsequently, the induced folding of the flexible C-terminal tail of CP12 in the active site of GAPDH stabilizes the binary complex. Formation of several hydrogen bonds compensates the entropic cost of CP12 fixation and terminates the interaction mechanism that contributes to carbon assimilation control.


PLOS ONE | 2011

The Skeletal Organic Matrix from Mediterranean Coral Balanophyllia europaea Influences Calcium Carbonate Precipitation

Stefano Goffredo; Patrizia Vergni; Michela Reggi; Erik Caroselli; Francesca Sparla; Oren Levy; Zvy Dubinsky; Giuseppe Falini

Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM) of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions.


Journal of Structural Biology | 2013

Control of aragonite deposition in colonial corals by intra-skeletal macromolecules.

Giuseppe Falini; Michela Reggi; Simona Fermani; Francesca Sparla; Stefano Goffredo; Zvy Dubinsky; Oren Levi; Yannicke Dauphin; Jean-Pierre Cuif

Scleractinian coral skeletons are composed mainly of aragonite in which a small percentage of organic matrix (OM) molecules is entrapped. It is well known that in corals the mineral deposition occurs in a biological confined nucleation site, but it is still unclear to what extent the calcification is controlled by OM molecules. Hence, the shape, size and organization of skeletal crystals from the fiber level through the colony architecture, were also attributed to factors as diverse as nucleation site mineral supersaturation and environmental factors in the habitat. In this work the OMs were extracted from the skeleton of three colonial corals, Acropora digitifera, Lophelia pertusa and Montipora caliculata. A. digitifera has a higher calcification rate than the other two species. OM molecules were characterized and their CaCO3 mineralization activity was evaluated by experiments of overgrowth on coral skeletons and of precipitation from solutions containing OM soluble and insoluble fractions and magnesium ions. The precipitates were characterized by spectroscopic and microscopic techniques. The results showed that the OM molecules of the three coral share similar features, but differ from those associated with mollusk shells. However, A. digitifera OM shows peculiarities from those from L. pertusa and M. caliculata. The CaCO3 overgrowth and precipitation experiments confirm the singularity of A. digitifera OM molecules as mineralizers. Moreover, their comparison indicates that only specific molecules are involved in the polymorphism control and suggests that when the whole extracted materials are used the OMs main effect is on the control of particles shape and morphology.


PLOS ONE | 2014

New Starch Phenotypes Produced by TILLING in Barley

Francesca Sparla; Giuseppe Falini; Ermelinda Botticella; Claudia Pirone; Valentina Talamè; Riccardo Bovina; Silvio Salvi; Roberto Tuberosa; Francesco Sestili; Paolo Trost

Barley grain starch is formed by amylose and amylopectin in a 1∶3 ratio, and is packed into granules of different dimensions. The distribution of granule dimension is bimodal, with a majority of small spherical B-granules and a smaller amount of large discoidal A-granules containing the majority of the starch. Starch granules are semi-crystalline structures with characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled by different enzymes and are relevant for nutritional value or industrial applications. Here, the Targeting-Induced Local Lesions IN Genomes (TILLING) approach was applied on the barley TILLMore TILLING population to identify 29 new alleles in five genes related to starch metabolism known to be expressed in the endosperm during grain filling: BMY1 (Beta-amylase 1), GBSSI (Granule Bound Starch Synthase I), LDA1 (Limit Dextrinase 1), SSI (Starch Synthase I), SSIIa (Starch Synthase IIa). Reserve starch of nine M3 mutant lines carrying missense or nonsense mutations was analysed for granule size, crystallinity and amylose/amylopectin content. Seven mutant lines presented starches with different features in respect to the wild-type: (i) a mutant line with a missense mutation in GBSSI showed a 4-fold reduced amylose/amylopectin ratio; (ii) a missense mutations in SSI resulted in 2-fold increase in A:B granule ratio; (iii) a nonsense mutation in SSIIa was associated with shrunken seeds with a 2-fold increased amylose/amylopectin ratio and different type of crystal packing in the granule; (iv) the remaining four missense mutations suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-granules. We demonstrate the feasibility of the TILLING approach to identify new alleles in genes related to starch metabolism in barley. Based on their novel physicochemical properties, some of the identified new mutations may have nutritional and/or industrial applications.


Nucleic Acids Research | 2014

FeON-FeOFF: the Helicobacter pylori Fur regulator commutates iron-responsive transcription by discriminative readout of opposed DNA grooves

Francesca Agriesti; Davide Roncarati; Francesco Musiani; Cristian Del Campo; Mario Iurlaro; Francesca Sparla; Stefano Ciurli; Alberto Danielli; Vincenzo Scarlato

Most transcriptional regulators bind nucleotide motifs in the major groove, although some are able to recognize molecular determinants conferred by the minor groove of DNA. Here we report a transcriptional commutator switch that exploits the alternative readout of grooves to mediate opposite output regulation for the same input signal. This mechanism accounts for the ability of the Helicobacter pylori Fur regulator to repress the expression of both iron-inducible and iron-repressible genes. When iron is scarce, Fur binds to DNA as a dimer, through the readout of thymine pairs in the major groove, repressing iron-inducible transcription (FeON). Conversely, on iron-repressible elements the metal ion acts as corepressor, inducing Fur multimerization with consequent minor groove readout of AT-rich inverted repeats (FeOFF). Our results provide first evidence for a novel regulatory paradigm, in which the discriminative readout of DNA grooves enables to toggle between the repression of genes in a mutually exclusive manner.


Biochimie | 2014

CP12-mediated protection of Calvin–Benson cycle enzymes from oxidative stress

Lucia Marri; Gabriel Thieulin-Pardo; Régine Lebrun; Rémy Puppo; Mirko Zaffagnini; Paolo Trost; Brigitte Gontero; Francesca Sparla

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) are two energy-consuming enzymes of the Calvin-Benson cycle, whose regulation is crucial for the global balance of the photosynthetic process under different environmental conditions. In oxygen phototrophs, GAPDH and PRK regulation involves the redox-sensitive protein CP12. In the dark, oxidized chloroplast thioredoxins trigger the formation of a GAPDH/CP12/PRK complex in which both enzyme activities are down-regulated. In this report, we show that free GAPDH (A4-isoform) and PRK are also inhibited by oxidants like H2O2, GSSG and GSNO. Both in the land plant Arabidopsis thaliana and in the green microalga Chlamydomonas reinhardtii, both enzymes can be glutathionylated as shown by biotinylated-GSSG assay and MALDI-ToF mass spectrometry. CP12 is not glutathionylated but homodisulfides are formed upon oxidant treatments. In Arabidopsis but not in Chlamydomonas, the interaction between oxidized CP12 and GAPDH provides full protection from oxidative damage. In both organisms, preformed GAPDH/CP12/PRK complexes are protected from GSSG or GSNO oxidation, and in Arabidopsis also from H2O2 treatment. Overall, the results suggest that the role of CP12 in oxygen phototrophs needs to be extended beyond light/dark regulation, and include protection of enzymes belonging to Calvin-Benson cycle from oxidative stress.


Protein and Peptide Letters | 2011

Isolation and compositional analysis of a CP12-associated complex of calvin cycle enzymes from Nicotiana tabacum.

A. Elizabete Carmo-Silva; Lucia Marri; Francesca Sparla; Michael E. Salvucci

Two Calvin Cycle enzymes, NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) form a multiprotein complex with CP12, a small intrinsically-unstructured protein. Under oxidizing conditions, association with CP12 confers redox-sensitivity to the otherwise redox-insensitive A isoform of GAPDH (GapA) and provides an additional level of down-regulation to the redox-regulated PRK. To determine if CP12-mediated regulation is specific for GAPDH and PRK in vivo, a high molecular weight complex containing CP12 was isolated from tobacco chloroplasts and leaves and its protein composition was characterized. Gel electrophoresis and immunoblot analyses after separation of stromal proteins by size fractionation verified that the GAPDH (both isoforms) and PRK co-migrated with CP12 in dark- but not light-adapted chloroplasts. Nano-liquid-chromatography-mass-spectrometry of the isolated complex identified only CP12, GAPDH and PRK. Since nearly all of the CP12 from darkened chloroplasts migrates with GADPH and PRK as a high molecular mass species, these data indicate that the tight association of tobacco CP12 with GAPDH and PRK is specific and involves no other Calvin Cycle enzymes.

Collaboration


Dive into the Francesca Sparla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge