Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Sparla is active.

Publication


Featured researches published by Francesca Sparla.


FEBS Journal | 2007

The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation

Mirko Zaffagnini; Laure Michelet; Christophe Marchand; Francesca Sparla; Paulette Decottignies; Pierre Le Maréchal; Myroslawa Miginiac-Maslow; Graham Noctor; Paolo Trost; Stéphane D. Lemaire

In animal cells, many proteins have been shown to undergo glutathionylation under conditions of oxidative stress. By contrast, very little is known about this post‐translational modification in plants. In the present work, we showed, using mass spectrometry, that the recombinant chloroplast A4‐glyceraldehyde‐3‐phosphate dehydrogenase (A4‐GAPDH) from Arabidopsis thaliana is glutathionylated with either oxidized glutathione or reduced glutathione and H2O2. The formation of a mixed disulfide between glutathione and A4‐GAPDH resulted in the inhibition of enzyme activity. A4‐GAPDH was also inhibited by oxidants such as H2O2. However, the effect of glutathionylation was reversed by reductants, whereas oxidation resulted in irreversible enzyme inactivation. On the other hand, the major isoform of photosynthetic GAPDH of higher plants (i.e. the AnBn‐GAPDH isozyme in either A2B2 or A8B8 conformation) was sensitive to oxidants but did not seem to undergo glutathionylation significantly. GAPDH catalysis is based on Cys149 forming a covalent intermediate with the substrate 1,3‐bisphosphoglycerate. In the presence of 1,3‐bisphosphoglycerate, A4‐GAPDH was fully protected from either oxidation or glutathionylation. Site‐directed mutagenesis of Cys153, the only cysteine located in close proximity to the GAPDH active‐site Cys149, did not affect enzyme inhibition by glutathionylation or oxidation. Catalytic Cys149 is thus suggested to be the target of both glutathionylation and thiol oxidation. Glutathionylation could be an important mechanism of regulation and protection of chloroplast A4‐GAPDH from irreversible oxidation under stress.


Plant Physiology | 2005

Reconstitution and Properties of the Recombinant Glyceraldehyde-3-Phosphate Dehydrogenase/CP12/Phosphoribulokinase Supramolecular Complex of Arabidopsis

Lucia Marri; Paolo Trost; Paolo Pupillo; Francesca Sparla

Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) form together with the regulatory peptide CP12 a supramolecular complex in Arabidopsis (Arabidopsis thaliana) that could be reconstituted in vitro using purified recombinant proteins. Both enzyme activities were strongly influenced by complex formation, providing an effective means for regulation of the Calvin cycle in vivo. PRK and CP12, but not GapA (A4 isoform of GAPDH), are redox-sensitive proteins. PRK was reversibly inhibited by oxidation. CP12 has no enzymatic activity, but it changed conformation depending on redox conditions. GapA, a bispecific NAD(P)-dependent dehydrogenase, specifically formed a binary complex with oxidized CP12 when bound to NAD. PRK did not interact with either GapA or CP12 singly, but oxidized PRK could form with GapA/CP12 a stable ternary complex of about 640 kD (GapA/CP12/PRK). Exchanging NADP for NAD, reducing CP12, or reducing PRK were all conditions that prevented formation of the complex. Although GapA activity was little affected by CP12 alone, the NADPH-dependent activity of GapA embedded in the GapA/CP12/PRK complex was 80% inhibited in respect to the free enzyme. The NADH activity was unaffected. Upon binding to GapA/CP12, the activity of oxidized PRK dropped from 25% down to 2% the activity of the free reduced enzyme. The supramolecular complex was dissociated by reduced thioredoxins, NADP, 1,3-bisphosphoglycerate (BPGA), or ATP. The activity of GapA was only partially recovered after complex dissociation by thioredoxins, NADP, or ATP, and full GapA activation required BPGA. NADP, ATP, or BPGA partially activated PRK, but full recovery of PRK activity required thioredoxins. The reversible formation of the GapA/CP12/PRK supramolecular complex provides novel possibilities to finely regulate GapA (“non-regulatory” GAPDH isozyme) and PRK (thioredoxin sensitive) in a coordinated manner.


FEBS Letters | 1999

Cloning and heterologous expression of NAD(P)H:quinone reductase of Arabidopsis thaliana, a functional homologue of animal DT-diaphorase

Francesca Sparla; Gabriella Tedeschi; Paolo Pupillo; Paolo Trost

In higher plants, NAD(P)H:quinone reductase (NQR) is the only flavoreductase known to reduce quinone substrates directly to hydroquinones by a two‐electron reaction mechanism. This enzymatic activity is believed to protect aerobic organisms from the oxidative action of semiquinones. For this reason plant NQR has recently been suggested to be related to animal DT‐diaphorase. A cDNA clone for NQR of Arabidopsis thaliana was identified, expressed in Escherichia coli, purified and characterized. Its amino acid sequence was found related to a number of putative proteins, mostly from prokaryotes, with still undetermined function. Conversely, in spite of the functional homology, sequence similarity between plant NQR and animal DT‐diaphorase was limited and essentially confined to the flavin binding site.


Journal of Biological Chemistry | 2013

Arabidopsis thaliana AMY3 Is a Unique Redox-regulated Chloroplastic α-Amylase

David Seung; Matthias Thalmann; Francesca Sparla; Maher Abou Hachem; Sang Kyu Lee; Emmanuelle Issakidis-Bourguet; Birte Svensson; Samuel C. Zeeman; Diana Santelia

Background: AtAMY3 is an α-amylase implicated in leaf starch degradation. Results: AtAMY3 releases small linear and branched glucans from starch under neutral-alkaline conditions and is subject to reductive activation by thioredoxins. Conclusion: AtAMY3 is adapted for activity in the chloroplast and is a redox-regulated enzyme. Significance: The unique properties of AtAMY3 among α-amylases provide new insight into the regulation of starch degradation in vivo. α-Amylases are glucan hydrolases that cleave α-1,4-glucosidic bonds in starch. In vascular plants, α-amylases can be classified into three subfamilies. Arabidopsis has one member of each subfamily. Among them, only AtAMY3 is localized in the chloroplast. We expressed and purified AtAMY3 from Escherichia coli and carried out a biochemical characterization of the protein to find factors that regulate its activity. Recombinant AtAMY3 was active toward both insoluble starch granules and soluble substrates, with a strong preference for β-limit dextrin over amylopectin. Activity was shown to be dependent on a conserved aspartic acid residue (Asp666), identified as the catalytic nucleophile in other plant α-amylases such as the barley AMY1. AtAMY3 released small linear and branched glucans from Arabidopsis starch granules, and the proportion of branched glucans increased after the predigestion of starch with a β-amylase. Optimal rates of starch digestion in vitro was achieved when both AtAMY3 and β-amylase activities were present, suggesting that the two enzymes work synergistically at the granule surface. We also found that AtAMY3 has unique properties among other characterized plant α-amylases, with a pH optimum of 7.5–8, appropriate for activity in the chloroplast stroma. AtAMY3 is also redox-regulated, and the inactive oxidized form of AtAMY3 could be reactivated by reduced thioredoxins. Site-directed mutagenesis combined with mass spectrometry analysis showed that a disulfide bridge between Cys499 and Cys587 is central to this regulation. This work provides new insights into how α-amylase activity may be regulated in the chloroplast.


Plant Physiology | 1996

NAD(P)H:(Quinone-Acceptor) Oxidoreductase of Tobacco Leaves Is a Flavin Mononucleotide-Containing Flavoenzyme.

Francesca Sparla; Gabriella Tedeschi; Paolo Trost

The soluble NAD(P)H:(quinone-acceptor) oxidoreductase [NAD(P)H-QR, EC 1.6.99.2] of Nicotiana tabacum L. leaves and roots has been purified. NAD(P)H-QR contains noncovalently bound flavin mononucleotide. Pairs of subunits of 21.4 kD are linked together by disulfide bridges, but the active enzyme is a homotetramer of 94 to 100 kD showing an isoelectric point of 5.1. NAD(P)H-QR is a B-stereospecific dehydrogenase. NADH and NADPH are electron donors of similar efficiency with Kcat:Km ratios (with duroquinone) of 6.2 x 107 and 8.0 x 107 m-1 s-1, respectively. Hydrophilic quinones are good electron acceptors, although ferricyanide and dichlorophenolindophenol are also reduced. The quinones are converted to hydroquinones by an obligatory two-electron transfer. No spectral evidence for a flavin semiquinone was detected following anaerobic photoreduction. Cibacron blue and 7-iodo-acridone-4-carboxylic acid are inhibitory. Tobacco NAD(P)H-QR resembles animal DT-diaphorase in some respects (identical reaction mechanism with a two-electron transfer to quinones, unusually high catalytic capability, and donor and acceptor substrate specificity), but it differs from DT-diaphorase in molecular structure, flavin cofactor, stereospecificity, and sensitivity to inhibitors. As in the case with DT-diaphorase in animals, the main NAD(P)H-QR function in plant cells may be the reduction of quinones to quinols, which prevents the production of semiquinones and oxygen radicals. The enzyme appears to belong to a widespread group of plant and fungal flavoproteins found in different cell compartments that are able to reduce quinones.


Biochimica et Biophysica Acta | 2000

Purification of cytochrome b-561 from bean hypocotyls plasma membrane. Evidence for the presence of two heme centers

Paolo Trost; Alajos Bérczi; Francesca Sparla; Giorgio Sponza; Beatrice Marzadori; Han Asard; Paolo Pupillo

The high potential, ascorbate-reducible b-type cytochrome of plant plasma membranes, named cytochrome b-561, has been purified to homogeneity from etiolated bean hypocotyls. The pure protein migrated in denaturing electrophoresis as a broad band of approximately 55 kDa, and was found to be glycosylated. Optical redox titrations of partially purified cytochrome b-561 indicated that it contains two hemes with similar spectral features, but distinct midpoint redox potentials (E(m7)+135 mV and +206 mV, respectively). The presence of two heme centers in cytochrome b-561 is consistent with its role in electron transfer across plant plasma membranes.


FEBS Letters | 1997

NADH : Fe (III) -chelate reductase of maize roots is an active cytochrome b5 reductase

Francesca Sparla; Paolo Bagnaresi; Sandra Scagliarini; Paolo Trost

Microsomal NADH:Fe(III)‐chelate reductase (NFR) of maize roots has been purified as a monomeric flavoprotein of 32 kDa with non‐covalently bound FAD. In the presence of NADH, NFR efficiently reduced the physiological iron‐chelate Fe(III)‐citrate (K cat/K m(Fe(III)‐citrate)=6.0×106 M−1 s−1) with a sequential reaction mechanism. Purified NFR was totally inhibited by the sulfhydryl reagent PHMB at 10−9 M, and it could use cyt b 5 as alternative electron acceptor with a maximal reduction rate as high as with Fe(III)‐citrate. We conclude that in maize roots the reduction of Fe(III)‐citrate is chiefly performed by a cytochrome b 5 reductase, mostly associated with intracellular membranes and in part with the plasma membrane.


Journal of Experimental Botany | 2016

β-amylase 1 (BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress

Martina Zanella; Gian Luca Borghi; Claudia Pirone; Matthias Thalmann; Diana Pazmino; Alex Costa; Diana Santelia; Paolo Trost; Francesca Sparla

During photosynthesis of higher plants, absorbed light energy is converted into chemical energy that, in part, is accumulated in the form of transitory starch within chloroplasts. In the following night, transitory starch is mobilized to sustain the heterotrophic metabolism of the plant. β-amylases are glucan hydrolases that cleave α-1,4-glycosidic bonds of starch and release maltose units from the non-reducing end of the polysaccharide chain. In Arabidopsis, nocturnal degradation of transitory starch involves mainly β-amylase-3 (BAM3). A second β-amylase isoform, β-amylase-1 (BAM1), is involved in diurnal starch degradation in guard cells, a process that sustains stomata opening. However, BAM1 also contributes to diurnal starch turnover in mesophyll cells under osmotic stress. With the aim of dissecting the role of β-amylases in osmotic stress responses in Arabidopsis, mutant plants lacking either BAM1 or BAM3 were subject to a mild (150mM mannitol) and prolonged (up to one week) osmotic stress. We show here that leaves of osmotically-stressed bam1 plants accumulated more starch and fewer soluble sugars than both wild-type and bam3 plants during the day. Moreover, bam1 mutants were impaired in proline accumulation and suffered from stronger lipid peroxidation, compared with both wild-type and bam3 plants. Taken together, these data strongly suggest that carbon skeletons deriving from BAM1 diurnal degradation of transitory starch support the biosynthesis of proline required to face the osmotic stress. We propose the transitory-starch/proline interplay as an interesting trait to be tackled by breeding technologies aimingto improve drought tolerance in relevant crops.


Current Opinion in Plant Biology | 2015

New insights into redox control of starch degradation

Diana Santelia; Paolo Trost; Francesca Sparla

Starch is one of the major sinks of fixed carbon in photosynthetic tissues of higher plants. Carbon fixation and the synthesis of primary starch occur during the day in the chloroplast stroma, whereas starch degradation typically occurs during the following night to fuel the whole plant with energy and carbon in the absence of photosynthesis. Redox-based regulatory systems play a central role in the modulation of several chloroplastic pathways. Reversible oxidations of cysteine residues are post-translational modifications that orchestrate the precise functioning of chloroplast pathways together with changes in pH, Mg(2+) and concentrations of metabolic intermediates. Leaf starch metabolism has been intensively studied. The enzymes involved in starch synthesis and degradation have been identified and characterized. However, the redox control of the enzymes responsible for starch degradation at night remains elusive, and their response to redox transitions conflicts with the timing of the physiological events. Most of the enzymes of starch degradation are activated by reducing conditions, characteristic of daytime. Thus, redox control may have only a minor role during starch degradation at night, but could become relevant for daily stomatal opening in guard cells or in the re-allocation of fixed carbon in mesophyll cells in response to stress conditions.


Plant Physiology and Biochemistry | 2000

Arabidopsis thaliana sequence analysis confirms the presence of cyt b-561 in plants: evidence for a novel protein family.

Han Asard; Javier Terol-Alcayde; Valeria Preger; Jurgen Del Favero; Wim Verelst; Francesca Sparla; Manuel Pérez-Alonso; Paolo Trost

Recent advances in the Arabidopsis sequencing project has elucidated the presence of two genes Atb561-A and Atb561-B that show limited homology to the DNA sequence encoding for the mammalian chromaffin granule cytochrome b-561 (cyt b-561). Detailed analysis of the structural features and conserved residues reveals, however, that the structural homology between the presumptive Arabidopsis proteins and the animal proteins is very high. All proteins are hydrophobic and show highly conserved transmembrane helices. The presumably heme-binding histidine residues in the plant and animal sequences as well as the suggested binding site for the electron acceptor, monodehydroascorbate, are strictly conserved. In contrast, the suggested electron donor (ascorbate) binding site is not very well conserved between the plant and animal sequences questioning the function of this motif. Sequence analysis of the Atb561-B gene demonstrates a different splicing than that initially predicted in silico resulting in a protein with nine extra amino acids and a significantly higher homology to the other cyt b-561 sequences. The homology between the plant and animal sequences is further supported by the strong similarity between a number of biochemical properties of the chromaffin cyt b-561 and the cyt b-561 isolated from bean hook plasma membranes. Since the mammalian cyt b-561 is considered specific to neuroadrenergic tissues, the identification of a closely related homologue in an aneural organism demonstrates that these proteins constitute a new class of widely occurring membrane proteins. Both the plant and animal cyt b-561 are involved in transmembrane electron transport using ascorbate as an electron donor. The similarity between these proteins therefore suggests, for the first time, that this transport supports a number of different cell physiological processes. An evolutionary relationship between the plant and animal proteins is presented.

Collaboration


Dive into the Francesca Sparla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge