Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco De Carlo is active.

Publication


Featured researches published by Francesco De Carlo.


Journal of Synchrotron Radiation | 2014

TomoPy: a framework for the analysis of synchrotron tomographic data

Dogˇa Gürsoy; Francesco De Carlo; Xianghui Xiao; Chris Jacobsen

A collaborative framework for the analysis of synchrotron tomographic data which has the potential to unify the effort of different facilities and beamlines performing similar tasks is described. The proposed Python-based framework is open-source, platform- and data-format-independent, has multiprocessing capability and supports functional programming that many researchers prefer.


Review of Scientific Instruments | 2001

A high-throughput x-ray microtomography system at the Advanced Photon Source

Yuxin Wang; Francesco De Carlo; Derrick C. Mancini; Ian McNulty; Brian Tieman; John Bresnahan; Ian T. Foster; Joseph A. Insley; Peter Lane; Gregor von Laszewski; Carl Kesselman; Mei-Hui Su; Marcus Thiebaux

~Received 14 November 2000; accepted for publication 23 January 2001!A third-generation synchrotron radiation source provides enough brilliance to acquire completetomographic data sets at 100 nm or better resolution in a few minutes. To take advantage of suchhigh-brilliance sources at the Advanced Photon Source, we have constructed a pipelined dataacquisition and reconstruction system that combines a fast detector system, high-speed datanetworks, and massively parallel computers to rapidly acquire the projection data and perform thereconstruction and rendering calculations. With the current setup, a data set can be obtained andreconstructed in tens of minutes. A specialized visualization computer makes renderedthree-dimensional~3D! images available to the beamline users minutes after the data acquisition iscompleted. This system is capable of examining a large number of samples at sub-mm 3D resolutionor studying the full 3D structure of a dynamically evolving sample on a 10 min temporal scale. Inthe near future, we expect to increase the spatial resolution to below 100 nm by using zone-platex-ray focusing optics and to improve the time resolution by the use of a broadband x-raymonochromator and a faster detector system.


Science | 2011

Microtomography of Partially Molten Rocks: Three-Dimensional Melt Distribution in Mantle Peridotite

Wenlu Zhu; Glenn A. Gaetani; Florian Fusseis; Laurent G. J. Montési; Francesco De Carlo

As mantle rocks melt, an interconnected network of liquid drives the ascent of magma to the sea floor. The permeability of the upper mantle controls melt segregation beneath spreading centers. Reconciling contradictory geochemical and geophysical observations at ocean ridges requires a better understanding of transport properties in partially molten rocks. Using x-ray synchrotron microtomography, we obtained three-dimensional data on melt distribution for mantle peridotite with various melt fractions. At melt fractions as low as 0.02, triple junctions along grain edges dominated the melt network; there was no evidence of an abrupt change in the fundamental character of melt extraction as melt fraction increased to 0.2. The porosity of the partially molten region beneath ocean ridges is therefore controlled by a balance between viscous compaction and melting rate, not by a change in melt topology.


Journal of The Electrochemical Society | 2010

Nondestructive Nanoscale 3D Elemental Mapping and Analysis of a Solid Oxide Fuel Cell Anode

Kyle N. Grew; Y. S. Chu; Jaemock Yi; Aldo A. Peracchio; John R. Izzo; Y. Hwu; Francesco De Carlo; Wilson K. S. Chiu

Present solid oxide fuel cells (SOFCs) use complex materials to provide (i) sufficient stability and support, (ii) electronic, ionic, and mass transport, and (iii) electrocatalytic activity. However, there is a limited quantitative understanding of the effect of the SOFCs three dimensional (3D) nano/microstructure on electronic, ionic, and mass-transfer-related losses. Here, a nondestructive tomographic imaging technique at 38.5 nm spatial resolution is used along with numerical models to examine the phase and pore networks within an SOFC anode and to provide insight into the heterogeneous microstructures contributions to the origins of transport-related losses. The microstructure produces substantial localized structure-induced losses, with approximately 50% of those losses arising from phase cross-sectional diameters of 0.2 μm or less.


Radiation Research | 2008

Long-Term Dose Response of Trabecular Bone in Mice to Proton Radiation

Eric R. Bandstra; Michael J. Pecaut; Erica R. Anderson; Jeffrey S. Willey; Francesco De Carlo; Stuart R. Stock; Daila S. Gridley; Gregory A. Nelson; Howard G. Levine; Ted A. Bateman

Abstract Bandstra, E. R., Pecaut, M. J., Anderson, E. R., Willey, J. S., De Carlo, F., Stock, S. R., Gridley, D. S., Nelson, G. A., Levine, H. G. and Bateman, T. A. Long-Term Dose Response of Trabecular Bone in Mice to Proton Radiation. Radiat. Res. 169, 607–614 (2008). Astronauts on exploratory missions will experience a complex environment, including microgravity and radiation. While the deleterious effects of unloading on bone are well established, fewer studies have focused on the effects of radiation. We previously demonstrated that 2 Gy of ionizing radiation has deleterious effects on trabecular bone in mice 4 months after exposure. The present study investigated the skeletal response after total doses of proton radiation that astronauts may be exposed to during a solar particle event. We exposed mice to 0.5, 1 or 2 Gy of whole-body proton radiation and killed them humanely 117 days later. Tibiae and femora were analyzed using microcomputed tomography, mechanical testing, mineral composition and quantitative histomorphometry. Relative to control mice, mice exposed to 2 Gy had significant differences in trabecular bone volume fraction (−20%), trabecular separation (+11%), and trabecular volumetric bone mineral density (−19%). Exposure to 1 Gy radiation induced a nonsignificant trend in trabecular bone volume fraction (−13%), while exposure to 0.5 Gy resulted in no differences. No response was detected in cortical bone. Further analysis of the 1-Gy mice using synchrotron microCT revealed a significantly lower trabecular bone volume fraction (−13%) than in control mice. Trabecular bone loss 4 months after exposure to 1 Gy highlights the importance of further examination of how space radiation affects bone.


Bone | 2012

Changes in intracortical microporosities induced by pharmaceutical treatment of osteoporosis as detected by high resolution micro-CT

Steven M. Tommasini; Andrea Trinward; Alvin S. Acerbo; Francesco De Carlo; Lisa M. Miller; Stefan Judex

Bones microporosities play important biologic and mechanical roles. Here, we quantified 3D changes in cortical osteocyte-lacunae and other small porosities induced by estrogen withdrawal and two different osteoporosis treatments. Unlike 2D measurements, these data collected via synchrotron radiation-based μCT describe the size and 3D spatial distribution of a large number of porous structures. Six-month old female Sprague-Dawley rats were separated into four groups of age-matched controls, untreated OVX, OVX treated with PTH, and OVX treated with Alendronate (ALN). Intracortical microporosity of the medial quadrant of the femoral diaphysis was quantified at endosteal, intracortical, and periosteal regions of the samples, allowing the quantification of osteocyte lacunae that were formed primarily before versus after the start of treatment. Across the overall thickness of the medial cortex, lacunar volume fraction (Lc.V/TV) was significantly lower in ALN treated rats compared to PTH. In the endosteal region, average osteocyte lacunar volume () of untreated OVX rats was significantly lower than in age-matched controls, indicating a decrease in osteocyte lacunar size in bone formed on the endosteal surface after estrogen withdrawal. The effect of treatment (OVX, ALN, PTH) on the number of lacunae per tissue volume (Lc.N/TV) was dependent on the specific location within the cortex (endosteal, intracortical, periosteal). In both the endosteal and intracortical regions, Lc.N/TV was significantly lower in ALN than in untreated OVX, suggesting a site-specific effect in osteocyte lacuna density with ALN treatment. There also were a significantly greater number of small pores (5-100 μm(3) in volume) in the endosteal region for PTH compared to ALN. The mechanical impact of this altered microporosity structure is unknown, but might serve to enhance, rather than deteriorate bone strength with PTH treatment, as smaller osteocyte lacunae may be better able to absorb shear forces than larger lacunae. Together, these data demonstrate that current treatments of osteoporosis can alter the number, size, and distribution of microporosities in cortical rat lamellar bone.


Journal of Thermal Spray Technology | 2005

Advanced Microstructural Characterization of Plasma-Sprayed Zirconia Coatings Over Extended Length Scales

A Kulkarni; Allen Goland; H. Herman; Andrew J. Allen; Jan Ilavsky; Gabrielle G. Long; Francesco De Carlo

Achieving control of the microstructure of plasma-sprayed thermal barrier coating (TBC) systems offers an opportunity to tailor coating properties to demanding applications. Accomplishing this requires a fundamental understanding of the correlations among processing, microstructure development, and related TBC properties. This article describes the quantitative characterization of the microstructure of plasma-sprayed partially stabilized zirconia (PSZ) coatings by means of x-ray and neutron-scattering imaging techniques. Small-angle neutron scattering, ultra-small-angle x-ray scattering, and x-ray microtomography were used to characterize and visualize the nature and structure of the features in these material systems. In addition, the influence of processing parameters on microstructure development is discussed along with thermal cycling effects on the pore morphology, and their resultant influence of the porosity on the thermal conductivity and elastic modulus of plasma-sprayed PSZ TBCs.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Anomalous high-pressure behavior of amorphous selenium from synchrotron x-ray diffraction and microtomography

Haozhe Liu; L. S. Wang; Xianghui Xiao; Francesco De Carlo; Ji Feng; Ho-kwang Mao; Russell J. Hemley

The high-pressure behavior of amorphous selenium has been investigated with time-resolved diamond anvil cell synchrotron x-ray diffraction and computed microtomography techniques. A two-step dynamic crystallization process is observed in which the monoclinic phase crystallized from the amorphous selenium and gradually converted to the trigonal phase, thereby explaining previously observed anomalous changes in electrical conductivity of the material under pressure. The crystallization of this elemental system involves local topological fluctuations and results in an unusual pressure-induced volume expansion. The metastability of the phases involved in the transition accounts for this phenomenon. The results demonstrate the use of pressure to control and directly monitor the relative densities and energetics of phases to create new phases from highly metastable states. The microtomographic technique developed here represents a method for determination of the equations of state of amorphous materials at extreme pressures and temperatures.


Physics in Medicine and Biology | 2004

Analytic image reconstruction in local phase-contrast tomography

Mark A. Anastasio; Daxin Shi; Francesco De Carlo; Xiaochuan Pan

Phase-contrast tomography is a non-interferometric imaging technique for reconstructing the refractive index distribution of a weakly absorbing object from a set of tomographic projection measurements. In many practical situations, the spatial resolution of the reconstructed image can be increased by minimizing the field of view (FOV) of the imaging system. When the object of interest is larger than the FOV, the measured projections are truncated and one is faced with a local tomography reconstruction problem. In this work, we analytically and numerically investigate the problem of reconstructing tomographic images from truncated phase-contrast projection data. A simple backprojection algorithm for reconstructing object discontinuities from truncated phase-contrast projection data is proposed and investigated that involves no explicit filtering of the projection data. We also investigate the use of the filtered backprojection algorithm and a local tomography reconstruction algorithm developed for absorption CT. These reconstruction algorithms are implemented and numerically investigated to corroborate our theoretical assertions.


Scientific Reports | 2017

Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction

Cang Zhao; Kamel Fezzaa; Ross Cunningham; Haidan Wen; Francesco De Carlo; Lianyi Chen; Anthony D. Rollett; Tao Sun

We employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescence phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.

Collaboration


Dive into the Francesco De Carlo's collaboration.

Top Co-Authors

Avatar

Xianghui Xiao

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Vincent De Andrade

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doga Gursoy

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

N. Chawla

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Cheolwoong Lim

University of Indianapolis

View shared research outputs
Top Co-Authors

Avatar

Chris Jacobsen

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Derrick C. Mancini

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ian T. Foster

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jason Williams

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge