Francesco De Marchis
Vita-Salute San Raffaele University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesco De Marchis.
Journal of Experimental Medicine | 2008
Vilma Urbonaviciute; Barbara G. Fürnrohr; Silke Meister; Luis E. Munoz; Petra Heyder; Francesco De Marchis; Marco Bianchi; Carsten J. Kirschning; Hermann Wagner; Angelo A. Manfredi; Joachim R. Kalden; Georg Schett; Patrizia Rovere-Querini; Martin J. Herrmann; Reinhard E. Voll
Autoantibodies against double-stranded DNA (dsDNA) and nucleosomes represent a hallmark of systemic lupus erythematosus (SLE). However, the mechanisms involved in breaking the immunological tolerance against these poorly immunogenic nuclear components are not fully understood. Impaired phagocytosis of apoptotic cells with consecutive release of nuclear antigens may contribute to the immune pathogenesis. The architectural chromosomal protein and proinflammatory mediator high mobility group box protein 1 (HMGB1) is tightly attached to the chromatin of apoptotic cells. We demonstrate that HMGB1 remains bound to nucleosomes released from late apoptotic cells in vitro. HMGB1–nucleosome complexes were also detected in plasma from SLE patients. HMGB1-containing nucleosomes from apoptotic cells induced secretion of interleukin (IL) 1β, IL-6, IL-10, and tumor necrosis factor (TNF) α and expression of costimulatory molecules in macrophages and dendritic cells (DC), respectively. Neither HMGB1-free nucleosomes from viable cells nor nucleosomes from apoptotic cells lacking HMGB1 induced cytokine production or DC activation. HMGB1-containing nucleosomes from apoptotic cells induced anti-dsDNA and antihistone IgG responses in a Toll-like receptor (TLR) 2–dependent manner, whereas nucleosomes from living cells did not. In conclusion, HMGB1–nucleosome complexes activate antigen presenting cells and, thereby, may crucially contribute to the pathogenesis of SLE via breaking the immunological tolerance against nucleosomes/dsDNA.
Journal of Cell Biology | 2004
Roberta Palumbo; Maurilio Sampaolesi; Francesco De Marchis; Rossana Tonlorenzi; Sara Colombetti; Anna Mondino; Giulio Cossu; Marco Bianchi
High mobility group box 1 (HMGB1) is an abundant chromatin protein that acts as a cytokine when released in the extracellular milieu by necrotic and inflammatory cells. Here, we show that extracellular HMGB1 and its receptor for advanced glycation end products (RAGE) induce both migration and proliferation of vessel-associated stem cells (mesoangioblasts), and thus may play a role in muscle tissue regeneration. In vitro, HMGB1 induces migration and proliferation of both adult and embryonic mesoangioblasts, and disrupts the barrier function of endothelial monolayers. In living mice, mesoangioblasts injected into the femoral artery migrate close to HMGB1-loaded heparin-Sepharose beads implanted in healthy muscle, but are unresponsive to control beads. Interestingly, α-sarcoglycan null dystrophic muscle contains elevated levels of HMGB1; however, mesoangioblasts migrate into dystrophic muscle even if their RAGE receptor is disabled. This implies that the HMGB1–RAGE interaction is sufficient, but not necessary, for mesoangioblast homing; a different pathway might coexist. Although the role of endogenous HMGB1 in the reconstruction of dystrophic muscle remains to be clarified, injected HMGB1 may be used to promote tissue regeneration.
Journal of Experimental Medicine | 2012
Emilie Venereau; Maura Casalgrandi; Milena Schiraldi; Daniel J. Antoine; Angela Cattaneo; Francesco De Marchis; Jaron Liu; Antonella Antonelli; Alessandro Preti; Lorenzo Raeli; Sara Samadi Shams; Huan Yang; Luca Varani; Ulf Andersson; Kevin J. Tracey; Angela Bachi; Mariagrazia Uguccioni; Marco Bianchi
HMGB1 orchestrates leukocyte recruitment and their induction to secrete inflammatory cytokines by switching between mutually exclusive redox states.
Journal of Experimental Medicine | 2012
Milena Schiraldi; Angela Raucci; Laura Martínez Muñoz; Elsa Livoti; Barbara Celona; Emilie Venereau; Tiziana Apuzzo; Francesco De Marchis; Mattia Pedotti; Angela Bachi; Marcus Thelen; Luca Varani; Mario Mellado; Amanda E. I. Proudfoot; Marco Bianchi; Mariagrazia Uguccioni
CXCL12 forms a complex with HMGB1 that binds to the chemokine receptor CXCR4 and increases inflammatory cell migration.
Journal of Leukocyte Biology | 2009
Roberta Palumbo; Francesco De Marchis; Tobias Pusterla; Antonio Conti; Massimo Alessio; Marco Bianchi
HMGB1 is a nuclear protein that signals tissue damage, as it is released by cells dying traumatically or secreted by activated innate immunity cells. Extracellular HMGB1 elicits the migration to the site of tissue damage of several cell types, including inflammatory cells and stem cells. The identity of the signaling pathways activated by extracellular HMGB1 is not known completely: We reported previously that ERK and NF‐κB pathways are involved, and we report here that Src is also activated. The ablation of Src or inhibition with the kinase inhibitor PP2 blocks migration toward HMGB1. Src associates to and mediates the phosphorylation of FAK and the formation of focal adhesions.
Molecular Medicine | 2015
Hyong Woo Choi; Miaoying Tian; Fei Song; Emilie Venereau; Alessandro Preti; Sang-Wook Park; Keith Hamilton; G. V. T. Swapna; Murli Manohar; Magali Moreau; Alessandra Agresti; Andrea Gorzanelli; Francesco De Marchis; Huang Wang; Marc A. Antonyak; Robert J. Micikas; Daniel R. Gentile; Richard A. Cerione; Frank C. Schroeder; Gaetano T. Montelione; Marco Bianchi; Daniel F. Klessig
Salicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke and certain cancers. Because aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin’s bioactivity can be attributed to its primary metabolite, SA. Here we demonstrate that human high mobility group box 1 (HMGB1) is a novel SA-binding protein. SA-binding sites on HMGB1 were identified in the HMG-box domains by nuclear magnetic resonance (NMR) spectroscopic studies and confirmed by mutational analysis. Extracellular HMGB1 is a damage-associated molecular pattern molecule (DAMP), with multiple redox states. SA suppresses both the chemoattractant activity of fully reduced HMGB1 and the increased expression of proinflammatory cytokine genes and cyclooxygenase 2 (COX-2) induced by disulfide HMGB1. Natural and synthetic SA derivatives with greater potency for inhibition of HMGB1 were identified, providing proof-of-concept that new molecules with high efficacy against sterile inflammation are attainable. An HMGB1 protein mutated in one of the SA-binding sites identified by NMR chemical shift perturbation studies retained chemoattractant activity, but lost binding of and inhibition by SA and its derivatives, thereby firmly establishing that SA binding to HMGB1 directly suppresses its proinflammatory activities. Identification of HMGB1 as a pharmacological target of SA/aspirin provides new insights into the mechanisms of action of one of the world’s longest and most used natural and synthetic drugs. It may also provide an explanation for the protective effects of low-dose aspirin usage.
Journal of Experimental Medicine | 2018
Mario Tirone; Ngoc Lan Tran; Chiara Ceriotti; Andrea Gorzanelli; Monica Canepari; Roberto Bottinelli; Angela Raucci; Stefania Di Maggio; César Santiago; Mario Mellado; Marielle Saclier; Stephanie François; Giorgia Careccia; Mingzhu He; Francesco De Marchis; Valentina Conti; Sabrina Ben Larbi; Sylvain Cuvellier; Maura Casalgrandi; Alessandro Preti; Bénédicte Chazaud; Yousef Al-Abed; Graziella Messina; Giovanni Sitia; Silvia Brunelli; Marco Bianchi; Emilie Venereau
Inflammation and tissue regeneration follow tissue damage, but little is known about how these processes are coordinated. High Mobility Group Box 1 (HMGB1) is a nuclear protein that, when released on injury, triggers inflammation. We previously showed that HMGB1 with reduced cysteines is a chemoattractant, whereas a disulfide bond makes it a proinflammatory cytokine. Here we report that fully reduced HMGB1 orchestrates muscle and liver regeneration via CXCR4, whereas disulfide HMGB1 and its receptors TLR4/MD-2 and RAGE (receptor for advanced glycation end products) are not involved. Injection of HMGB1 accelerates tissue repair by acting on resident muscle stem cells, hepatocytes, and infiltrating cells. The nonoxidizable HMGB1 mutant 3S, in which serines replace cysteines, promotes muscle and liver regeneration more efficiently than the wild-type protein and without exacerbating inflammation by selectively interacting with CXCR4. Overall, our results show that the reduced form of HMGB1 coordinates tissue regeneration and suggest that 3S may be used to safely accelerate healing after injury in diverse clinical contexts.
Molecular Therapy | 2011
Maria Simona Aguzzi; Debora Faraone; Daniela D'Arcangelo; Francesco De Marchis; Gabriele Toietta; Domenico Ribatti; Alberto Parazzoli; Paolo Colombo; Maurizio C. Capogrossi; Antonio Facchiano
Previous data report that fibroblast growth factor-2 (FGF-2)-derived peptide FREG potently inhibits FGF-2-dependent angiogenesis in vitro and in vivo. Here, we show that FREG inhibits up to 70% in vitro growth and invasion/migration of smooth muscle and melanoma cells. Such inhibition is mediated by platelet-derived growth factor-receptor-α (PDGF-Rα); in fact, proliferation and migration were restored upon PDGF-Rα neutralization. Further experiments demonstrated that FREG interacts with PDGF-Rα both in vitro and in vivo and stimulates its phosphorylation. We have previously shown that overexpressing PDGF-Rα strongly inhibits melanoma growth in vivo; we, therefore, hypothesized that PDGF-Rα agonists may represent a novel tool to inhibit melanoma growth in vivo. To support this hypothesis, FREG was inoculated intravenously (i.v.) in a mouse melanoma model and markedly inhibited pulmonary metastases formation. Immunohistochemical analyses showed less proliferation, less angiogenesis, and more apoptosis in metastasized lungs upon FREG treatment, as compared to untreated controls. Finally, in preliminary acute toxicity studies, FREG showed no toxicity signs in healthy animals, and neither microscopic nor macroscopic toxicity at the liver, kidney, and lungs level. Altogether, these data indicate that FREG systemic treatment strongly inhibits melanoma metastases development and indicate for the first time that agonists of PDGF-Rα may control melanoma both in vitro and in vivo.
Scientific Reports | 2016
Rosanna Mezzapelle; Eltjona Rrapaj; Elena Gatti; Chiara Ceriotti; Francesco De Marchis; Alessandro Preti; Antonello E. Spinelli; Laura Perani; Massimo Venturini; Silvia Valtorta; Rosa Maria Moresco; Lorenza Pecciarini; Claudio Doglioni; Michela Frenquelli; Luca Crippa; Camilla Recordati; Eugenio Scanziani; Hilda de Vries; Anton Berns; Roberta Frapolli; Renzo Boldorini; Maurizio D’Incalci; Marco Bianchi; Massimo P. Crippa
Malignant Mesothelioma is a highly aggressive cancer, which is difficult to diagnose and treat. Here we describe the molecular, cellular and morphological characterization of a syngeneic system consisting of murine AB1, AB12 and AB22 mesothelioma cells injected in immunocompetent BALB/c mice, which allows the study of the interplay of tumor cells with the immune system. Murine mesothelioma cells, like human ones, respond to exogenous High Mobility Group Box 1 protein, a Damage-Associated Molecular Pattern that acts as a chemoattractant for leukocytes and as a proinflammatory mediator. The tumors derived from AB cells are morphologically and histologically similar to human MM tumors, and respond to treatments used for MM patients. Our system largely recapitulates human mesothelioma, and we advocate its use for the study of MM development and treatment.
Biochimica et Biophysica Acta | 2017
Stefania Di Maggio; Giuseppina Milano; Francesco De Marchis; Alessandro D’Ambrosio; Matteo Bertolotti; Blanca Soler Palacios; Ileana Badi; Elena Sommariva; Giulio Pompilio; Maurizio C. Capogrossi; Angela Raucci
Myocardial infarction (MI) is a major health burden worldwide. Extracellular High mobility group box 1 (HMGB1) regulates tissue healing after injuries. The reduced form of HMGB1 (fr-HMGB1) exerts chemotactic activity by binding CXCL12 through CXCR4, while the disulfide form, (ds-HMGB1), induces cytokines expression by TLR4. Here, we assessed the role of HMGB1 redox forms and the non-oxidizable mutant (3S) on human cardiac fibroblast (hcFbs) functions and cardiac remodeling after infarction. Among HMGB1 receptors, hcFbs express CXCR4. Fr-HMGB1 and 3S, but not ds-HMGB1, promote hcFbs migration through Src activation, while none of HMGB1 redox forms induces proliferation or inflammatory mediators. 3S is more effective than fr-HMGB1 in stimulating hcFbs migration and Src phosphorylation being active at lower concentrations and in oxidizing conditions. Notably, chemotaxis toward both proteins is CXCR4-dependent but, in contrast to fr-HMGB1, 3S does not require CXCL12 since hcFbs migration persists in the presence of the CXCL12/CXCR4 inhibitor AMD3100 or an anti-CXCL12 antibody. Interestingly, 3S interacts with CXCR4 and induces a different receptor conformation than CXCL12. Mice undergoing MI and receiving 3S exhibit adverse LV remodeling owing to an excessive collagen deposition promoted by a higher number of myofibroblasts. On the contrary, fr-HMGB1 ameliorates cardiac performance enhancing neoangiogenesis and reducing the infarcted area and fibrosis. Altogether, our results demonstrate that non-oxidizable HMGB1 induce a sustained cardiac fibroblasts migration despite the redox state of the environment and by altering CXCL12/CXCR4 axis. This affects proper cardiac remodeling after an infarction.