Francesco Di Girolamo
Boston Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesco Di Girolamo.
Current Organic Chemistry | 2013
Francesco Di Girolamo; Isabella Lante; Maurizio Muraca; Lorenza Putignani
Mass spectrometry (MS) is one of the key analytical technology on which the emerging ‘‘-omics’’ approaches are based. It may provide detection and quantization of thousands of proteins and biologically active metabolites from a tissue, body fluid or cell culture working in a ‘‘global’’ or ‘‘targeted’’ manner, down to ultra-trace levels. It can be expected that the high performance of MS technology, coupled to routine data handling, will soon bring fruit in the request for a better understanding of human diseases, leading to new molecular biomarkers, hence affecting drug targets and therapies. In this review, we focus on the main advances in the MS technologies, influencing genomics, transcriptomics, proteomics, lipidomics and metabolomics fields, up to the most recent MS applications to meta-omic studies.
Current Opinion in Allergy and Clinical Immunology | 2015
Francesco Di Girolamo; Maurizio Muraca; Oscar Mazzina; Isabella Lante; Lamia Dahdah
Purpose of reviewTo familiarize the reader with the recent developments in the identification of food protein allergens by proteomics mass spectrometry-based methods, named allergenomics. Recent findingsThe proteomic analysis of food protein allergens has became a hot topic in the food safety field in recent years. Indeed, food allergies represent a current and relevant problem in clinical medicine. Several food allergenomics studies have recently been performed, aiming at better understanding the cause of sensitization to cows milk in breastfed infants and at assessing both the safety of food (e.g. transgenic) and in particular the allergenic properties of processed fish and seafood. SummaryFood protein allergen characterization and quantification, together with the immunoglobulin E epitope mapping, will contribute to the diagnosis/prognosis of food allergy and will lead to a better safety assessment of foods (e.g. novel transgenic foods).
International Journal of Molecular Sciences | 2014
Francesco Di Girolamo; Andrea Masotti; Guglielmo Salvatori; Margherita Scapaticci; Maurizio Muraca; Lorenza Putignani
She-donkey’s milk (DM) and goat’s milk (GM) are commonly used in newborn and infant feeding because they are less allergenic than other milk types. It is, therefore, mandatory to avoid adulteration and contamination by other milk allergens, developing fast and efficient analytical methods to assess the authenticity of these precious nutrients. In this experimental work, a sensitive and robust matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling was designed to assess the genuineness of DM and GM milks. This workflow allows the identification of DM and GM adulteration at levels of 0.5%, thus, representing a sensitive tool for milk adulteration analysis, if compared with other laborious and time-consuming analytical procedures.
International Journal of Molecular Sciences | 2014
Francesco Di Girolamo; Alfonsina D’Amato; Isabella Lante; Fabrizio Signore; Marta Muraca; Lorenza Putignani
Due to the incompleteness of animal genome sequencing, the analysis and characterization of serum proteomes of most farm animals are still in their infancy, compared to the already well-documented human serum proteome. This review focuses on the implications of the farm animal serum proteomics in order to identify novel biomarkers for animal welfare, early diagnosis, prognosis and monitoring of infectious disease treatment, and develop new vaccines, aiming at determining the reciprocal benefits for humans and animals.
Gene | 2014
Emanuele Bellacchio; Alessia Palma; Stefania Corrente; Francesco Di Girolamo; E. Helen Kemp; Gigliola Di Matteo; Laura Comelli; Rita Carsetti; Simona Cascioli; Caterina Cancrini; Alessandra Fierabracci
Autoimmunity can develop from an often undetermined interplay of genetic and environmental factors. Rare forms of autoimmune conditions may also result from single gene mutations as for autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, an autosomal recessive disease associated with mutated forms of the autoimmune regulator gene. It was proposed that genetic variability in the autoimmune regulator locus, in particular heterozygous loss-of-function mutations, might favor the development of organ-specific autoimmunity by affecting the presentation of self-antigens in the thymus. Indeed, heterozygous mutations of the autoimmune regulator gene were reported in patients with organ-specific autoimmunity. Also, in primary immunodeficiencies, a breakdown in central/peripheral tolerance frequently produces association with autoimmunity. The causative link may involve a common genetic background and several gene defects have been identified as putative culprits. We report a unique patient, a 14 year old male from Lazio region, affected by common variable immunodeficiency associated with autoimmune manifestations (alopecia, onychodystrophy) and heterozygote for the S250C variant located in the SAND domain of the autoimmune regulator gene protein. To our knowledge this is the first report of the S250C variant in a patient bearing this unusual combination of autoimmunity and immunodeficiency. To obtain insights into the possible molecular effects of the S250C variant, we have carried out an in silico analysis of the SAND domain structure of the autoimmune regulator protein. In particular, homology modeling has allowed us to observe that the cysteine introduced by the S250C variant is surrounded by cationic residues, and by means of molecular dynamics simulations together with pKa calculations, we have shown that these residues remain stably proximal to cysteine-250 lowering its pKa and thus conferring high chemical reactivity to the mutated residue. We propose that the enhanced reactivity of cysteine-250, which is likely to impair the protein function but probably insufficient to produce alone a phenotype as a heterozygous S250C variant due to compensation mechanisms, might become manifest when combined with other genetic/environmental factors. These results can provide the rationale for the patients unusual phenotype, shedding new light into the pathogenesis of the clinical association of autoimmunity and immunodeficiency.
International Journal of Molecular Sciences | 2015
Francesco Di Girolamo; Andrea Masotti; Isabella Lante; Margherita Scapaticci; Cosima Damiana Calvano; Carlo G. Zambonin; Maurizio Muraca; Lorenza Putignani
Extra virgin olive oil (EVOO) with its nutraceutical characteristics substantially contributes as a major nutrient to the health benefit of the Mediterranean diet. Unfortunately, the adulteration of EVOO with less expensive oils (e.g., peanut and corn oils), has become one of the biggest source of agricultural fraud in the European Union, with important health implications for consumers, mainly due to the introduction of seed oil-derived allergens causing, especially in children, severe food allergy phenomena. In this regard, revealing adulterations of EVOO is of fundamental importance for health care and prevention reasons, especially in children. To this aim, effective analytical methods to assess EVOO purity are necessary. Here, we propose a simple, rapid, robust and very sensitive method for non-specialized mass spectrometric laboratory, based on the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) coupled to unsupervised hierarchical clustering (UHC), principal component (PCA) and Pearson’s correlation analyses, to reveal corn oil (CO) adulterations in EVOO at very low levels (down to 0.5%).
PLOS Neglected Tropical Diseases | 2017
Valeria Marzano; Livia Mancinelli; Giorgia Bracaglia; Federica Del Chierico; Pamela Vernocchi; Francesco Di Girolamo; Stefano Garrone; Hyppolite Tchidjou Kuekou; Patrizia D’Argenio; Bruno Dallapiccola; Andrea Urbani; Lorenza Putignani
The human gut has been continuously exposed to a broad spectrum of intestinal organisms, including viruses, bacteria, fungi, and parasites (protozoa and worms), over millions of years of coevolution, and plays a central role in human health. The modern lifestyles of Western countries, such as the adoption of highly hygienic habits, the extensive use of antimicrobial drugs, and increasing globalisation, have dramatically altered the composition of the gut milieu, especially in terms of its eukaryotic “citizens.” In the past few decades, numerous studies have highlighted the composition and role of human intestinal bacteria in physiological and pathological conditions, while few investigations exist on gut parasites and particularly on their coexistence and interaction with the intestinal microbiota. Studies of the gut “parasitome” through “omic” technologies, such as (meta)genomics, transcriptomics, proteomics, and metabolomics, are herein reviewed to better understand their role in the relationships between intestinal parasites, host, and resident prokaryotes, whether pathogens or commensals. Systems biology–based profiles of the gut “parasitome” under physiological and severe disease conditions can indeed contribute to the control of infectious diseases and offer a new perspective of omics-assisted tropical medicine.
Current Opinion in Allergy and Clinical Immunology | 2017
Vincenzo Fierro; Francesco Di Girolamo; Valeria Marzano; Lamia Dahdah; Maurizio Mennini
Purpose of review We review the laws on labeling in the international community, the difficulties they pose to the food manufacturers to prepare the food labels and the methodologies to determine the concentration of potential allergens in foods. Recent findings European Food Safety Authority and International Life Sciences Institute Europe are evaluating strategies to identify the threshold level of allergen that can trigger a reaction in individuals. The most used techniques to detect the presence of protein in food are Enzyme-linked immunosorbent assay, polymerase chain reaction and real time polymerase chain reaction. Researchers are now trying to apply proteomics to estimate the amount of protein within the food. In order to protect the health of consumers, the Codex Alimentarius Commission updates constantly the list of allergens. In response to these regulations, some industries have also added some precautionary allergen labeling (PAL). It was generally agreed that PAL statements needed to be visible, simple, and safe. It was suggested that PAL be standardized, an action that would occur if the ‘Voluntary Incidental Trace Allergen Labelling’ process was made mandatory. Summary So far, no laboratory technique is able to reassure the consumers about the composition of foods found on the packaging. International authorities produced increasingly stringent laws, but more is still to do.
Nutrients | 2018
Laura Di Francesco; Francesco Di Girolamo; Maurizio Mennini; Andrea Masotti; Guglielmo Salvatori; Giuliano Rigon; Fabrizio Signore; Emanuela Pietrantoni; Margherita Scapaticci; Isabella Lante; Bianca Maria Goffredo; Oscar Mazzina; Ahmed Elbousify; Paola Roncada; Andrea Dotta; Alessandro Fiocchi; Lorenza Putignani
Human milk composition is dynamic, and substitute formulae are intended to mimic its protein content. The purpose of this study was to investigate the potentiality of matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS), followed by multivariate data analyses as a tool to analyze the peptide profiles of mammalian, human, and formula milks. Breast milk samples from women at different lactation stages (2 (n = 5), 30 (n = 6), 60 (n = 5), and 90 (n = 4) days postpartum), and milk from donkeys (n = 4), cows (n = 4), buffaloes (n = 7), goats (n = 4), ewes (n = 5), and camels (n = 2) were collected. Different brands (n = 4) of infant formulae were also analyzed. Protein content (<30 kDa) was analyzed by MS, and data were exported for statistical elaborations. The mass spectra for each milk closely clustered together, whereas different milk samples resulted in well-separated mass spectra. Human samples formed a cluster in which colostrum constituted a well-defined subcluster. None of the milk formulae correlated with animal or human milk, although they were specifically characterized and correlated well with each other. These findings propose MALDI-TOF MS milk profiling as an analytical tool to discriminate, in a blinded way, different milk types. As each formula has a distinct specificity, shifting a baby from one to another formula implies a specific proteomic exposure. These profiles may assist in milk proteomics for easiness of use and minimization of costs, suggesting that the MALDI-TOF MS pipelines may be useful for not only milk adulteration assessments but also for the characterization of banked milk specimens in pediatric clinical settings.
Biomarkers in Medicine | 2012
Francesco Di Girolamo; Federica Del Chierico; Gianfranco Caenaro; Isabella Lante; Maurizio Muraca; Lorenza Putignani