Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Dieli is active.

Publication


Featured researches published by Francesco Dieli.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor κB

Chiara Porta; Monica Rimoldi; Geert Raes; Lea Brys; Pietro Ghezzi; Diana Di Liberto; Francesco Dieli; Serena Ghisletti; Gioacchino Natoli; Patrick De Baetselier; Alberto Mantovani; Antonio Sica

Cells of the monocyte–macrophage lineage play a central role in the orchestration and resolution of inflammation. Plasticity is a hallmark of mononuclear phagocytes, and in response to environmental signals these cells undergo different forms of polarized activation, the extremes of which are called classic or M1 and alternative or M2. NF-κB is a key regulator of inflammation and resolution, and its activation is subject to multiple levels of regulation, including inhibitory, which finely tune macrophage functions. Here we identify the p50 subunit of NF-κB as a key regulator of M2-driven inflammatory reactions in vitro and in vivo. p50 NF-κB inhibits NF-κB–driven, M1-polarizing, IFN-β production. Accordingly, p50-deficient mice show exacerbated M1-driven inflammation and defective capacity to mount allergy and helminth-driven M2-polarized inflammatory reactions. Thus, NF-κB p50 is a key component in the orchestration of M2-driven inflammatory reactions.


Cancer Research | 2007

Targeting human {gamma}delta} T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer

Francesco Dieli; David Vermijlen; Fabio Fulfaro; Nadia Caccamo; Serena Meraviglia; Giuseppe Cicero; Andrew Roberts; Simona Buccheri; M. D'Asaro; Nicola Gebbia; Alfredo Salerno; Matthias Eberl; Adrian Hayday

The increasing evidence that gammadelta T cells have potent antitumor activity suggests their value in immunotherapy, particularly in areas of unmet need such as metastatic carcinoma. To this end, we initiated a phase I clinical trial in metastatic hormone-refractory prostate cancer to examine the feasibility and consequences of using the gammadelta T-cell agonist zoledronate, either alone or in combination with low-dose interleukin 2 (IL-2), to activate peripheral blood gammadelta cells. Nine patients were enlisted to each arm. Neither treatment showed appreciable toxicity. Most patients were treated with zoledronate + IL-2, but conversely only two treated with zoledronate displayed a significant long-term shift of peripheral gammadelta cells toward an activated effector-memory-like state (T(EM)), producing IFN-gamma and perforin. These patients also maintained serum levels of tumor necrosis factor-related apoptosis inducing ligand (TRAIL), consistent with a parallel microarray analysis showing that TRAIL is produced by gammadelta cells activated via the T-cell receptor and IL-2. Moreover, the numbers of T(EM) gammadelta cells showed a statistically significant correlation with declining prostate-specific antigen levels and objective clinical outcomes that comprised three instances of partial remission and five of stable disease. By contrast, most patients treated only with zoledronate failed to sustain either gammadelta cell numbers or serum TRAIL, and showed progressive clinical deterioration. Thus, zoledronate + IL-2 represents a novel, safe, and feasible approach to induce immunologic and clinical responses in patients with metastatic carcinomas, potentially providing a substantially increased window for specific approaches to be administered. Moreover, gammadelta cell phenotypes and possibly serum TRAIL may constitute novel biomarkers of prognosis upon therapy with zoledronate + IL-2 in metastatic carcinoma.


Journal of Experimental Medicine | 2003

Differentiation of Effector/Memory Vδ2 T Cells and Migratory Routes in Lymph Nodes or Inflammatory Sites

Francesco Dieli; Fabrizio Poccia; Martin Lipp; Guido Sireci; Nadia Caccamo; Caterina Di Sano; Alfredo Salerno

Vδ2 T lymphocytes recognize nonpeptidic antigens without presentation by MHC molecules and mount both immediate effector functions and memory responses after microbial infection. However, how Vδ2 T cells mediate different facets of a memory response remains unknown. Here, we show that the expression of CD45RA and CD27 antigens defines four subsets of human Vδ2 T cells with distinctive compartmentalization routes. Naive CD45RA+CD27+ and memory CD45RA−CD27+ cells express lymph node homing receptors, abound in lymph nodes, and lack immediate effector functions. Conversely, memory CD45RA−CD27− and terminally differentiated CD45RA+CD27− cells, which express receptors for homing to inflamed tissues, are poorly represented in the lymph nodes while abounding at sites of inflammation, and display immediate effector functions. These observations and additional in vitro experiments indicate a lineage differentiation pattern for human Vδ2 T cells that generates naive cells circulating in lymph nodes, effector/memory cells patrolling the blood, and terminally differentiated effector cells residing in inflamed tissues.


Cell Stem Cell | 2014

CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis.

Matilde Todaro; Miriam Gaggianesi; Veronica Catalano; Antonina Benfante; Flora Iovino; Mauro Biffoni; Tiziana Apuzzo; Isabella Sperduti; Silvia Volpe; Gianfranco Cocorullo; Gaspare Gulotta; Francesco Dieli; Ruggero De Maria; Giorgio Stassi

Cancer stem cells drive tumor formation and metastasis, but how they acquire metastatic traits is not well understood. Here, we show that all colorectal cancer stem cells (CR-CSCs) express CD44v6, which is required for their migration and generation of metastatic tumors. CD44v6 expression is low in primary tumors but demarcated clonogenic CR-CSC populations. Cytokines hepatocyte growth factor (HGF), osteopontin (OPN), and stromal-derived factor 1α (SDF-1), secreted from tumor associated cells, increase CD44v6 expression in CR-CSCs by activating the Wnt/β-catenin pathway, which promotes migration and metastasis. CD44v6(-) progenitor cells do not give rise to metastatic lesions but, when treated with cytokines, acquire CD44v6 expression and metastatic capacity. Importantly, phosphatidylinositol 3-kinase (PI3K) inhibition selectively killed CD44v6 CR-CSCs and reduced metastatic growth. In patient cohorts, low levels of CD44v6 predict increased probability of survival. Thus, the metastatic process in colorectal cancer is initiated by CSCs through the expression of CD44v6, which is both a functional biomarker and therapeutic target.


European Journal of Immunology | 2010

Multifunctional CD4+ T cells correlate with active Mycobacterium tuberculosis infection

Nadia Caccamo; Giuliana Guggino; Simone A. Joosten; Giuseppe Gelsomino; Paola Di Carlo; Lucina Titone; Domenico Galati; Marialuisa Bocchino; Alessandro Matarese; Alfredo Salerno; Alessandro Sanduzzi; Willeke P. J. Franken; Tom H. M. Ottenhoff; Francesco Dieli

Th1 CD4+ T cells and their derived cytokines are crucial for protection against Mycobacterium tuberculosis. Using multiparametric flow cytometry, we have evaluated the distribution of seven distinct functional states (IFN‐γ/IL‐2/TNF‐α triple expressors, IFN‐γ/IL‐2, IFN‐γ/TNF‐α or TNF‐α/IL‐2 double expressors or IFN‐γ, IL‐2 or TNF‐α single expressors) of CD4+ T cells in individuals with latent M. tuberculosis infection (LTBI) and active tuberculosis (TB). We found that triple expressors, while detectable in 85–90%TB patients, were only present in 10–15% of LTBI subjects. On the contrary, LTBI subjects had significantly higher (12‐ to 15‐fold) proportions of IL‐2/IFN‐γ double and IFN‐γ single expressors as compared with the other CD4+ T‐cell subsets. Proportions of the other double or single CD4+ T‐cell expressors did not differ between TB and LTBI subjects. These distinct IFN‐γ, IL‐2 and TNF‐α profiles of M. tuberculosis‐specific CD4+ T cells seem to be associated with live bacterial loads, as indicated by the decrease in frequency of multifunctional T cells in TB‐infected patients after completion of anti‐mycobacterial therapy. Our results suggest that phenotypic and functional signatures of CD4+ T cells may serve as immunological correlates of protection and curative host responses, and be a useful tool to monitor the efficacy of anti‐mycobacterial therapy.


The Journal of Infectious Diseases | 2001

Granulysin-Dependent Killing of Intracellular and Extracellular Mycobacterium tuberculosis by Vγ9/Vδ2 T Lymphocytes

Francesco Dieli; Marita Troye-Blomberg; Juraj Ivanyi; Jean Jacques Fournié; Alan M. Krensky; Marc Bonneville; Marie Alix Peyrat; Nadia Rosalia Caccamo; Guido Sireci; Alfredo Salerno

Contribution of Vgamma9/Vdelta2 T lymphocytes to immune protection against Mycobacterium tuberculosis is still a matter of debate. It was reported earlier that Vgamma9/Vdelta2 T lymphocytes kill macrophages harboring live M. tuberculosis through a granule-dependent mechanism that results in killing of intracellular bacilli. This study found that Vgamma9/Vdelta2 T lymphocytes reduce the viability of both extracellular and intracellular M. tuberculosis. Granulysin and perforin, both detected in Vgamma9/Vdelta2 T lymphocytes, play a major role, which indicates that Vgamma9/Vdelta2 T lymphocytes directly contribute to a protective host response against M. tuberculosis infection.


Journal of Immunology | 2009

Efficient Killing of Human Colon Cancer Stem Cells by γδ T Lymphocytes

Matilde Todaro; M. D'Asaro; Nadia Caccamo; Flora Iovino; Maria Giovanna Francipane; Serena Meraviglia; Valentina Orlando; Carmela La Mendola; Gaspare Gulotta; Alfredo Salerno; Francesco Dieli; Giorgio Stassi

Colon cancer comprises a small population of cancer stem cells (CSC) that is responsible for tumor maintenance and resistant to cancer therapies, possibly allowing for tumor recapitulation once treatment stops. We previously demonstrated that such chemoresistance is mediated by autocrine production of IL-4 through the up-regulation of antiapoptotic proteins. Several innate and adaptive immune effector cells allow for the recognition and destruction of cancer precursors before they constitute the tumor mass. However, cellular immune-based therapies have not been experimented yet in the population of CSCs. Here, we show that the bisphosphonate zoledronate sensitizes colon CSCs to Vγ9Vδ2 T cell cytotoxicity. Proliferation and production of cytokines (TNF-α and IFN-γ) and cytotoxic and apoptotic molecules (TRAIL and granzymes) were also induced after exposure of Vγ9Vδ2 T cells to sensitized targets. Vγ9Vδ2 T cell cytotoxicity was mediated by the granule exocytosis pathway and was highly dependent on isoprenoid production by of tumor cells. Moreover, CSCs recognition and killing was mainly TCR mediated, whereas NKG2D played a role only when tumor targets expressed several NKG2D ligands. We conclude that intentional activation of Vγ9Vδ2 T cells by zoledronate may substantially increase antitumor activities and represent a novel strategy for colon cancer immunotherapy.


Clinical and Experimental Immunology | 2010

In vivo manipulation of Vgamma9Vdelta2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients.

Serena Meraviglia; Matthias Eberl; David Vermijlen; Matilde Todaro; Simona Buccheri; Giuseppe Cicero; C. La Mendola; Giuliana Guggino; M. D'Asaro; Valentina Orlando; Francesco Scarpa; Andrew W. Roberts; Nadia Caccamo; Giorgio Stassi; Francesco Dieli; Adrian Hayday

The potent anti‐tumour activities of γδ T cells have prompted the development of protocols in which γδ‐agonists are administered to cancer patients. Encouraging results from small Phase I trials have fuelled efforts to characterize more clearly the application of this approach to unmet clinical needs such as metastatic carcinoma. To examine this approach in breast cancer, a Phase I trial was conducted in which zoledronate, a Vγ9Vδ2 T cell agonist, plus low‐dose interleukin (IL)‐2 were administered to 10 therapeutically terminal, advanced metastatic breast cancer patients. Treatment was well tolerated and promoted the effector maturation of Vγ9Vδ2 T cells in all patients. However, a statistically significant correlation of clinical outcome with peripheral Vγ9Vδ2 T cell numbers emerged, as seven patients who failed to sustain Vγ9Vδ2 T cells showed progressive clinical deterioration, while three patients who sustained robust peripheral Vγ9Vδ2 cell populations showed declining CA15‐3 levels and displayed one instance of partial remission and two of stable disease, respectively. In the context of an earlier trial in prostate cancer, these data emphasize the strong linkage of Vγ9Vδ2 T cell status to reduced carcinoma progression, and suggest that zoledronate plus low‐dose IL‐2 offers a novel, safe and feasible approach to enhance this in a subset of treatment‐refractory patients with advanced breast cancer.


Blood | 2011

Differentiation, phenotype, and function of interleukin-17–producing human Vγ9Vδ2 T cells

Nadia Caccamo; Carmela La Mendola; Valentina Orlando; Serena Meraviglia; Matilde Todaro; Giorgio Stassi; Guido Sireci; Jean Jacques Fournié; Francesco Dieli

In healthy adults, the major peripheral blood γδ T-cell subset expresses the Vγ9Vδ2 TCR and displays pleiotropic features. Here we report that coculture of naive Vγ9Vδ2 T cells with phosphoantigens and a cocktail of cytokines (IL-1-β, TGF-β, IL-6, and IL-23), leads to selective expression of the transcription factor RORγt and polarization toward IL-17 production. IL-17(+) Vγ9Vδ2 T cells express the chemokine receptor CCR6 and produce IL-17 but neither IL-22 nor IFN-γ; they have a predominant terminally differentiated (CD27(-)CD45RA(+)) phenotype and express granzyme B, TRAIL, FasL, and CD161. On antigen activation, IL-17(+) Vγ9Vδ2 T cells rapidly induce CXCL8-mediated migration and phagocytosis of neutrophils and IL-17-dependent production of β-defensin by epithelial cells, indicating that they may be involved in host immune responses against infectious microorganisms. Accordingly, an increased percentage of IL-17(+) Vγ9Vδ2 lymphocytes is detected in the peripheral blood and at the site of disease in children with bacterial meningitis, and this pattern was reversed after successful antibacterial therapy. Most notably, the phenotype of IL-17(+) Vγ9Vδ2 T cells in children with meningitis matches that of in vitro differentiated IL-17(+) Vγ9Vδ2 T cells. Our findings delineate a previously unknown subset of human IL-17(+) Vγ9Vδ2 T lymphocytes implicated in the pathophysiology of inflammatory responses during bacterial infections.


Gastroenterology | 2011

Bone Morphogenetic Protein 4 Induces Differentiation of Colorectal Cancer Stem Cells and Increases Their Response to Chemotherapy in Mice

Ylenia Lombardo; Alessandro Scopelliti; Patrizia Cammareri; Matilde Todaro; Flora Iovino; Lucia Ricci Vitiani; Gaspare Gulotta; Francesco Dieli; Ruggero De Maria; Giorgio Stassi

BACKGROUND & AIMS The limited clinical response observed in many patients with colorectal cancer may be related to the presence of chemoresistant colorectal cancer stem cells (CRC-SCs). Bone morphogenetic protein 4 (BMP4) promotes the differentiation of normal colonic stem cells. We investigated whether BMP4 might be used to induce differentiation of CRC-SCs and for therapeutic purposes. METHODS CRC-SCs were isolated from 25 tumor samples based on expression of CD133 or using a selection culture medium. BMP4 expression and activity on CRC-SCs were evaluated in vitro; progeny of the stem cells were evaluated by immunofluorescence, immunoblot, and flow cytometry analyses. The potential therapeutic effect of BMP4 was assessed in immunocompromised mice after injection of CRC-SCs that responded to chemotherapy (n = 4) or that did not (n = 2). RESULTS CRC-SCs did not express BMP4 whereas differentiated cells did. Recombinant BMP4 promoted differentiation and apoptosis of CRC-SCs in 12 of 15 independent experiments; this effect did not depend on Small Mothers against decapentaplegic (Smad)4 expression level or microsatellite stability. BMP4 activated the canonical and noncanonical BMP signaling pathways, including phosphoInositide 3-kinase (PI3K) and PKB (protein kinase B)/AKT. Mutations in PI3K or loss of Phosphatase and Tensin homolog (PTEN) in Smad4-defective tumors made CRC-SCs unresponsive to BMP4. Administration of BMP4 to immunocompromised mice with tumors that arose from CRC-SCs increased the antitumor effects of 5-fluorouracil and oxaliplatin. CONCLUSIONS BMP4 promotes terminal differentiation, apoptosis, and chemosensitization of CRC-SCs in tumors that do not have simultaneous mutations in Smad4 and constitutive activation of PI3K. BMP4 might be developed as a therapeutic agent against cancer stem cells in advanced colorectal tumors.

Collaboration


Dive into the Francesco Dieli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge