Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Favaron is active.

Publication


Featured researches published by Francesco Favaron.


Plant Physiology | 2007

Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea.

Vincenzo Lionetti; Alessandro Raiola; Laura Camardella; Alfonso Giovane; Nicolai Obel; Markus Pauly; Francesco Favaron; Felice Cervone; Daniela Bellincampi

Pectin, one of the main components of plant cell wall, is secreted in a highly methylesterified form and is demethylesterified in muro by pectin methylesterase (PME). The action of PME is important in plant development and defense and makes pectin susceptible to hydrolysis by enzymes such as endopolygalacturonases. Regulation of PME activity by specific protein inhibitors (PMEIs) can, therefore, play a role in plant development as well as in defense by influencing the susceptibility of the wall to microbial endopolygalacturonases. To test this hypothesis, we have constitutively expressed the genes AtPMEI-1 and AtPMEI-2 in Arabidopsis (Arabidopsis thaliana) and targeted the proteins into the apoplast. The overexpression of the inhibitors resulted in a decrease of PME activity in transgenic plants, and two PME isoforms were identified that interacted with both inhibitors. While the content of uronic acids in transformed plants was not significantly different from that of wild type, the degree of pectin methylesterification was increased by about 16%. Moreover, differences in the fine structure of pectins of transformed plants were observed by enzymatic fingerprinting. Transformed plants showed a slight but significant increase in root length and were more resistant to the necrotrophic fungus Botrytis cinerea. The reduced symptoms caused by the fungus on transgenic plants were related to its impaired ability to grow on methylesterified pectins.


European Journal of Plant Pathology | 1995

Pectin-degrading enzymes and plant-parasite interactions

P. Alghisi; Francesco Favaron

The first contact of microbial plant parasites with their hosts occurs at the plant surface. During penetration and colonisation, they conflict with the cell walls of the host. Breakdown of plant cell wall is essential not only for parasite spreading in tissue, but also for release of assimilable carbohydrate s, or accessibility to protoplast and cell killing. Biochemical analysis of the infection process has demonstrated that microbial plant pathogens produce a set of depolymerases capable of attacking the different carbohydrate polymers and proteins composing the plant cell wall. A crucial role in pathogenesis, however, has been demonstrated only for the pectin-degrading enzymes. These are the first class of enzymes produced during plant infection, accounting for the rapid and extensive degradation of cell wall and cell death, and reproduce the major symptoms of diseases caused by many necrotrophic pathogens, particularly those which produce soft-rot diseases. The traditional approach to studying pectindegrading enzymes is through their extraction from infected tissue, purification, characterisation and assessment of their ability to degrade purified plant cell wall or macerate plant tissues. Recent advances in gene manipulation of micro-organisms has provided powerful tools for understanding the contribution of pectic enzymes to the infection process. This review focuses on some aspects of pectic enzymes on which recent insights have been gained: the regulation of expression of pectic enzymes in bacterial and fungal parasites and their role in pathogenesis and host defence reactions.


Molecular Plant-microbe Interactions | 2011

The Ectopic Expression of a Pectin Methyl Esterase Inhibitor Increases Pectin Methyl Esterification and Limits Fungal Diseases in Wheat

Chiara Volpi; Michela Janni; Vincenzo Lionetti; Daniela Bellincampi; Francesco Favaron; Renato D'Ovidio

Cell wall pectin methyl esterification can influence plant resistance because highly methyl-esterified pectin can be less susceptible to the hydrolysis by pectic enzymes such as fungal endopolygalacturonases (PG). Pectin is secreted into the cell wall in a highly methyl-esterified form and, here, is de-methyl esterified by pectin methyl esterase (PME). The activity of PME is controlled by specific protein inhibitors called PMEI; consequently, an increased inhibition of PME by PMEI might modify the pectin methyl esterification. In order to test the possibility of improving wheat resistance by modifying the methyl esterification of pectin cell wall, we have produced durum wheat transgenic lines expressing the PMEI from Actinidia chinensis (AcPMEI). The expression of AcPMEI endows wheat with a reduced endogenous PME activity, and transgenic lines expressing a high level of the inhibitor showed a significant increase in the degree of methyl esterification. These lines showed a significant reduction of disease symptoms caused by the fungal pathogens Bipolaris sorokiniana or Fusarium graminearum. This increased resistance was related to the impaired ability of these fungal pathogens to grow on methyl-esterified pectin and to a reduced activity of the fungal PG to hydrolyze methyl-esterified pectin. In addition to their importance for wheat improvement, these results highlight the primary role of pectin despite its low content in the wheat cell wall.


Molecular Plant-microbe Interactions | 2008

The Expression of a Bean PGIP in Transgenic Wheat Confers Increased Resistance to the Fungal Pathogen Bipolaris sorokiniana

Michela Janni; Luca Sella; Francesco Favaron; Ann E. Blechl; Giulia De Lorenzo; Renato D'Ovidio

A possible strategy to control plant pathogens is the improvement of natural plant defense mechanisms against the tools that pathogens commonly use to penetrate and colonize the host tissue. One of these mechanisms is represented by the host plants ability to inhibit the pathogens capacity to degrade plant cell wall polysaccharides. Polygalacturonase-inhibiting proteins (PGIP) are plant defense cell wall glycoproteins that inhibit the activity of fungal endopolygalacturonases (endo-PGs). To assess the effectiveness of these proteins in protecting wheat from fungal pathogens, we produced a number of transgenic wheat lines expressing a bean PGIP (PvPGIP2) having a wide spectrum of specificities against fungal PGs. Three independent transgenic lines were characterized in detail, including determination of the levels of PvPGIP2 accumulation and its subcellular localization and inhibitory activity. Results show that the transgene-encoded protein is correctly secreted into the apoplast, maintains its characteristic recognition specificities, and endows the transgenic wheat with new PG recognition capabilities. As a consequence, transgenic wheat tissue showed increased resistance to digestion by the PG of Fusarium moniliforme. These new properties also were confirmed at the plant level during interactions with the fungal pathogen Bipolaris sorokiniana. All three lines showed significant reductions in symptom progression (46 to 50%) through the leaves following infection with this pathogen. Our results illustrate the feasibility of improving wheats defenses against pathogens by expression of proteins with new capabilities to counteract those produced by the pathogens.


Molecular Plant-microbe Interactions | 2004

Relationships Among Endo-Polygalacturonase, Oxalate, pH, and Plant Polygalacturonase-Inhibiting Protein (PGIP) in the Interaction Between Sclerotinia sclerotiorum and Soybean

Francesco Favaron; Luca Sella; Renato D'Ovidio

The necrotrophic fungal pathogen Sclerotinia sclerotiorum secretes oxalic acid and endo-polygalacturonase (endo-PG) in host plants. Oxalic acid acidifies the plant tissue to values more suitable to endo-PG activity. However, we observed that the infected soybean seedlings possessed a pH of 3.8, which is below that optimal for endo-PG activity (4.5 to 5.0). We investigated, therefore, the effects of pH (from 5.0 to 3.6) and oxalate (5 to 20 mM) on the activity of the major basic endo-PG (PGb) and towards an acidic endo-PG (PGa) secreted by S. sclerotiorum during soybean infection. We verified that only PGb activity is stimulated by oxalate, while at the lowest pH levels, PGa escapes the inhibition of a soybean polygalacturonase-inhibiting protein (PGIP). These results, performed on polygalacturonic acid, were apparently consistent with data obtained from studies with soybean hypocotyl segments, in which PGb activity was increased by oxalate and PGa maintained its activity also at pH 3.6, possibly because at this pH the PGIP contained in the plant tissue is inactive. Reverse transcription-polymerase chain reaction analysis showed that, during soybean infection, the expression of the putative pga gene is delayed in comparison to the basic one. The different temporal expressions of the two endo-PGs and their differing responses to pH, oxalate, and PGIP seem to be consistent with a possible maximization of the fungal PG activity in the host tissue.


Molecular Plant-microbe Interactions | 2005

An Endopolygalacturonase from Sclerotinia sclerotiorum Induces Calcium-Mediated Signaling and Programmed Cell Death in Soybean Cells

Anna Zuppini; Lorella Navazio; Luca Sella; Carala Castiglioni; Francesco Favaron; Paola Mariani

A basic endopolygalacturonase (PG) isoform, produced early by Sclerotinia sclerotiorum when infecting soybean seedlings, was used to examine the signaling role of the enzyme in aequorin-expressing soybean cells. A cytosolic Ca2+ elevation was induced, with a rapid increase (phase 1) and a very slow decrease (phase 2) of Ca2+ concentration, indicating the involvement of Ca2+ ions in PG signaling. Within 1 h of PG-cell contact a remarkable level of cell death was recorded, significantly higher than the control cell culture turnover. The observed morphological and biochemical changes were indicative of the activation of programmed cell death; in particular, cytochrome c release in the cytoplasm and activation of both caspase 9-like and caspase 3-like proteases were found. When a polygalacturonase-inhibiting protein (PGIP) and the PG were simultaneously applied to cells, both the Ca2+ increase and cell death were annulled. The possible roles of prolonged sustained cytosolic Ca2+ concentrations in inducing cell death and of the PG-PGIP interaction in preventing PG signaling are discussed.


Planta | 1992

Expression and localization of polygalacturonase during the outgrowth of lateral roots in Allium porrum L.

R. Peretto; Francesco Favaron; Vittorio Bettini; G. De Lorenzo; S. Marini; P. Alghisi; Felice Cervone; Paola Bonfante

The presence of polygalacturonase and its correlation with the formation of lateral roots in leek (Allium porrum L.) seedlings have been investigated. During root growth, a steady increase in polygalacturonase activity was associated with that of the lateral root primordia. Fractionation of root extract by fast protein liquid chromatography resolved at least two polygalacturonase isoforms. One of the isoforms, a 75-kdalton protein, strongly reacted on Western blots probed with a polyclonal antibody raised against tomato polygalacturonase. It also reacted with both polyclonal and monoclonal antisera raised against Fusarium moniliforme polygalacturonase. In situ localization with these three antibodies showed that polygalacturonase was present over the meristems of lateral root primordia. Antibodies against pectins (Knox et al. 1990, Planta 181, 512–521) detected large amounts of pectic material filling the area between the apex of the primordium and the mother root tissues. We suggest that a polygalacturonase plays an important role in leek root morphogenesis, particularly during lateral root outgrowth.


Physiological and Molecular Plant Pathology | 1988

Polygalacturonase isoenzymes and oxalic acid produced by Sclerotinia sclerotiorum in soybean hypocotyls as elicitors of glyceollin

Francesco Favaron; P. Alghisi; P. Marciano; P. Magro

The polygalacturonases (PG) and oxalic acid produced by Sclerotinia sclerotiorum in infected soybean hypocotyls were investigated as elicitors of the phytoalexin glyceollin I. Purification to homogeneity through isoelectrofocusing and ion-exchange fast protein liquid chromatography revealed three endo-PG isoenzymes (PG-I, PG-II and PG-IV) and one exo-PG (PG-III) in 6-day-old etiolated soybean hypocotyls infected with the B-24 isolate of S. sclerotiorum. PG-I and PG-III, in the range of concentrations tested (0·15–1·2 reducing units ml−1), did not act as elicitors of glyceollin I synthesis. Some elicitor activity was shown by PG-II at 0·6–1·2 reducing units ml−1. PG-IV, at lower doses (0·038–0·30 reducing units ml−1), was even more effective in inducing phytoalexin synthesis. However higher concentrations of PG-IV induced tissue softening and decreased phytoalexin accumulation. PG-II and PG-IV released heat-stable elicitors from purified soybean cell walls supporting the evidence that uronides are intermediate inducers in elicitation by endo-PGs. Oxalic acid was an active elicitor of glyceollin I over the range of concentrations tested (0·31–20 mm) with the maximum at a concentration of 5 mm. The inability of oxalic acid to release uronides from purified cell walls makes it unlikely that uronide intermediate elicitors are involved in elicitation by oxalic acid.


Mycorrhiza | 1995

Polygalacturonase activity and location in arbuscular mycorrhizal roots of Allium porrum L.

R. Peretto; Paola Bonfante; Vittorio Bettini; Francesco Favaron; P. Alghisi

Polygalacturonase activity and location were analysed in leek roots (Allium porrum L.) colonized by Glomus versiforme (Karst.) Berch, an arbuscular mycorrhizal (AM) fungus. Polygalacturonase activity in mycorrhizal roots did not differ quantitatively from that found in nonmycorrhizal roots on all of the four harvesting dates. Fractionation of mycorrhizal root extracts by ion-exchange chromatography showed that expression of polygalacturonase was specific to the mutualistic association. Immunofluorescence and immunogold experiments were carried out to locate the polygalacturonase in mycorrhizal roots using a polyclonal antibody raised against a Fusarium moniliforme endopolygalacturonase. Immunolabelling was observed all over the arbuscules (intracellular fungal structures) but particularly at the interface between the arbuscule and the plant membrane. Since pectins are located in this area, we suggest that polygalacturonase produced during the symbiosis could play a role in plant pectin degradation.


Molecular Plant-microbe Interactions | 2013

Constitutive expression of the xylanase inhibitor TAXI-III delays Fusarium head blight symptoms in durum wheat transgenic plants.

Ilaria Moscetti; Silvio Tundo; Michela Janni; Luca Sella; Katia Gazzetti; Alexandra Tauzin; Thierry Giardina; Stefania Masci; Francesco Favaron; Renato D'Ovidio

Cereals contain xylanase inhibitor (XI) proteins which inhibit microbial xylanases and are considered part of the defense mechanisms to counteract microbial pathogens. Nevertheless, in planta evidence for this role has not been reported yet. Therefore, we produced a number of transgenic plants constitutively overexpressing TAXI-III, a member of the TAXI type XI that is induced by pathogen infection. Results showed that TAXI-III endows the transgenic wheat with new inhibition capacities. We also showed that TAXI-III is correctly secreted into the apoplast and possesses the expected inhibition parameters against microbial xylanases. The new inhibition properties of the transgenic plants correlate with a significant delay of Fusarium head blight disease symptoms caused by Fusarium graminearum but do not significantly influence leaf spot symptoms caused by Bipolaris sorokiniana. We showed that this contrasting result can be due to the different capacity of TAXI-III to inhibit the xylanase activity of these two fungal pathogens. These results provide, for the first time, clear evidence in planta that XI are involved in plant defense against fungal pathogens and show the potential to manipulate TAXI-III accumulation to improve wheat resistance against F. graminearum.

Collaboration


Dive into the Francesco Favaron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michela Janni

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felice Cervone

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge