Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Fornai is active.

Publication


Featured researches published by Francesco Fornai.


Journal of Neurochemistry | 2002

Nicotine prevents experimental Parkinsonism in rodents and induces striatal increase of neurotrophic factors

Roberto Maggio; Marco Riva; Francesca Vaglini; Francesco Fornai; Raffaella Molteni; Marianna Armogida; Giorgio Racagni; Giovanni Corsini

Abstract: The repeated finding of an apparent protective effect of cigarette smoking on the risk of Parkinsons disease is one of the few consistent results in the epidemiology of this disorder. Among the numerous substances that originate from tobacco smoke, nicotine is by far the most widely studied. Nicotine is a natural alkaloid that has considerable stimulatory effects on the CNS. Its effects on the CNS are mediated by the activation of neuronal heteromeric acetylcholine‐gated ion channel receptors (nAChRs, also termed nicotinic acetylcholine receptors). In the present study, we describe the neuroprotective effects of (−)‐nicotine in two animal models of parkinsonism: diethyldithiocarbamate‐induced enhancement of 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine toxicity in mice and methamphetamine‐induced neurotoxicity in rats and mice. The neuroprotective effect of (−)‐nicotine was very similar to that of the noncompetitive NMDA receptor antagonist (+)‐MK‐801. In parallel experiments, we found that (−)‐nicotine induces the basic fibroblast growth factor‐2 (FGF‐2) and the brain‐derived neurotrophic factor in rat striatum. The effect of (−)‐nicotine on the induction of FGF‐2 was prevented by the nAChR antagonist mecamylamine. We also found that (+)‐MK‐801 was able to induce FGF‐2 in the striatum. As trophic factors have been reported to be neuroprotective for dopaminergic cells, our data suggest that the increase in neurotrophic factors is a possible mechanism by which (−)‐nicotine protects from experimental parkinsonisms.


American Journal of Human Genetics | 2001

Arginine:Glycine Amidinotransferase Deficiency: The Third Inborn Error of Creatine Metabolism in Humans

Chike B. Item; Sylvia Stockler-Ipsiroglu; Carmen Stromberger; Adolf Mühl; Maria Grazia Alessandrì; Maria Cristina Bianchi; Michela Tosetti; Francesco Fornai; Giovanni Cioni

Arginine:glycine amidinotransferase (AGAT) catalyzes the first step of creatine synthesis, resulting in the formation of guanidinoacetate, which is a substrate for creatine formation. In two female siblings with mental retardation who had brain creatine deficiency that was reversible by means of oral creatine supplementation and had low urinary guanidinoacetate concentrations, AGAT deficiency was identified as a new genetic defect in creatine metabolism. A homozygous G-A transition at nucleotide position 9297, converting a tryptophan codon (TGG) to a stop codon (TAG) at residue 149 (T149X), resulted in undetectable cDNA, as investigated by reverse-transcription PCR, as well as in undetectable AGAT activity, as investigated radiochemically in cultivated skin fibroblasts and in virus-transformed lymphoblasts of the patients. The parents were heterozygous for the mutant allele, with intermediate residual AGAT activities. Recognition and treatment with oral creatine supplements may prevent neurological sequelae in affected patients.


Neuroscience & Biobehavioral Reviews | 2000

The role of the locus coeruleus in the development of Parkinson's disease.

Marco Gesi; Paola Soldani; F. S. Giorgi; Anna Santinami; Irene Bonaccorsi; Francesco Fornai

In Parkinsons disease, together with the classic loss of dopamine neurons of the substantia nigra pars compacta, neuropathological studies and biochemical findings documented the occurrence of a concomitant significant cell death in the locus coeruleus. This review analyzes the latest data obtained from experimental parkinsonism indicating that, the loss of norepinephrine in Parkinsons disease might worsen the dopamine nigrostriatal damage. Within this latter context, basic research provided a new provocative hypothesis on the significance of locus coeruleus in conditioning the natural history of Parkinsons disease. In particular, the loss of a trophic influence of these neurons might be crucial in increasing the sensitivity of nigrostriatal dopamine axons to various neurotoxic insults. In line with this, recently, it has been shown that locus coeruleus activity plays a pivotal role in the expression of various immediate early genes and in inducing the phosphorilation of cyclic adenosine monophosphate response element-binding proteins, suggesting a role of the nucleus in sustaining a protective effect.


Journal of Neurochemistry | 1992

MK-801 Prevents 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Parkinsonism in Primates

Alessandro Zuddas; Germano Oberto; Francesca Vaglini; Flavia Fascetti; Francesco Fornai; Giovanni Corsini

Abstract: In cynomologus monkeys, systemic administration of MK‐801, a noncompetitive antagonist for the N‐methyl‐4‐aspartate receptor, prevented the development of the parkinsonian syndrome induced by the neurotoxin 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP). MK‐801 also attenuated dopamine depletion in the caudate and putamen and protected dopaminergic neurons in the substantia nigra from the degeneration induced by the neurotoxin. Nevertheless, 7 days after MPTP administration in the caudate and putamen of monkeys also receiving MK‐801, the levels of toxic l‐methyl‐4‐phenylpyridinium were even higher than those measured in monkeys receiving MPTP alone. This indicates that the protective action of MK‐801 is not related to MPTP metabolism and strongly suggests that, in primates, the excitatory amino acids could play a crucial role in the mechanism of the selective neuronal death induced by MPTP.


Neuroscience | 2003

Role of α-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice

Oliver M. Schlüter; Francesco Fornai; Mg Alessandri; Shigeo Takamori; Martin Geppert; Reinhard Jahn; Thomas C. Südhof

Abstract In humans, mutations in the α-synuclein gene or exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) produce Parkinson’s disease with loss of dopaminergic neurons and depletion of nigrostriatal dopamine. α-Synuclein is a vertebrate-specific component of presynaptic nerve terminals that may function in modulating synaptic transmission. To test whether MPTP toxicity involves α-synuclein, we generated α-synuclein-deficient mice by homologous recombination, and analyzed the effect of deleting α-synuclein on MPTP toxicity using these knockout mice. In addition, we examined commercially available mice that contain a spontaneous loss of the α-synuclein gene. As described previously, deletion of α-synuclein had no significant effects on brain structure or composition. In particular, the levels of synaptic proteins were not altered, and the concentrations of dopamine, dopamine metabolites, and dopaminergic proteins were unchanged. Upon acute MPTP challenge, α-synuclein knockout mice were partly protected from chronic depletion of nigrostriatal dopamine when compared with littermates of the same genetic background, whereas mice carrying the spontaneous deletion of the α-synuclein gene exhibited no protection. Furthermore, α-synuclein knockout mice but not the mice with the α-synuclein gene deletion were slightly more sensitive to methamphetamine than littermate control mice. These results demonstrate that α-synuclein is not obligatorily coupled to MPTP sensitivity, but can influence MPTP toxicity on some genetic backgrounds, and illustrate the need for extensive controls in studies aimed at describing the effects of mouse knockouts on MPTP sensitivity.


Neuroscience & Biobehavioral Reviews | 2004

The role of norepinephrine in epilepsy: from the bench to the bedside.

Filippo S. Giorgi; Chiara Pizzanelli; Francesca Biagioni; Luigi Murri; Francesco Fornai

This article provides a brief review of the role of norepinephrine (NE) in epilepsy, starting from early studies reproducing the kindling model in NE-lesioned rats, through the use of specific ligands for adrenergic receptors in experimental models of epilepsy, up to recent advances obtained by using transgenic and knock-out mice for specific genes expressed in the NE system. Data obtained from multiple experimental models converge to demonstrate the antiepileptic role of endogenous NE. This effect predominantly consists in counteracting the development of an epileptic circuit (such as in the kindling model) rather than increasing the epileptic threshold. This suggests that NE activity is critical in modifying epilepsy-induced neuronal changes especially on the limbic system. These data encompass from experimental models to clinical applications as recently evidenced by the need of an intact NE innervation for the antiepileptic mechanisms of vagal nerve stimulation (VNS) in patients suffering from refractory epilepsy. Finally, recent data demonstrate that NE loss increases neuronal damage following focally induced limbic status epilepticus, confirming a protective effect of brain NE, which has already been shown in other neurological disorders.


The Journal of Neuroscience | 2004

Endogenous Activation of mGlu5 Metabotropic Glutamate Receptors Contributes to the Development of Nigro-Striatal Damage Induced by 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine in Mice

Giuseppe Battaglia; Carla L. Busceti; Gemma Molinaro; Francesca Biagioni; Marianna Storto; Francesco Fornai; Ferdinando Nicoletti; Valeria Bruno

We combined the use of knock-out mice and subtype-selective antagonists [2-methyl-6-(phenylethynyl)pyridine (MPEP) and (E)-2-methyl-6-(2-phenylethenyl)-pyridine (SIB1893)] to examine whether endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the pathophysiology of nigro-striatal damage in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. High doses of MPTP (four injections of 20 mg/kg, i.p., every 2 hr) induced a high mortality rate and a nearly total degeneration of the nigro-striatal pathway in wild-type mice. mGlu5 knock-out mice were less sensitive to MPTP toxicity, as shown by a higher survival and a milder nigro-striatal damage. Protection against MPTP (80 mg/kg) toxicity was also observed after MPEP injections (four injections of 5 mg/kg, i.p., 30 min before each MPTP injection). MPEP treatment did not further increase neuroprotection against 80 mg/kg of MPTP in mGlu5 knock-out mice, indicating that the drug acted by inhibiting mGlu5 receptors. In wild-type mice, MPEP was also neuroprotective when challenged against lower doses of MPTP (either 30 mg/kg, single injection, or four of 10 mg/kg injections). The action of MPEP was mimicked by SIB1893 but not by the mGlu1 receptor antagonist 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester. MPEP did not change the kinetics of 1-methyl-4-phenylpyridinium ion formation in the striatum of mice injected with MPTP. We conclude that mGlu5 receptors act as amplifiers of MPTP toxicity and that mGlu5 receptor antagonists may limit the extent of nigro-striatal damage in experimental models of parkinsonism.


The Journal of Neuroscience | 2005

Induction of Dickkopf-1, a Negative Modulator of the Wnt Pathway, Is Required for the Development of Ischemic Neuronal Death

Irene Cappuccio; Agata Calderone; Carla L. Busceti; Francesca Biagioni; Fabrizio Pontarelli; Valeria Bruno; Marianna Storto; Georg T. Terstappen; Giovanni Gaviraghi; Francesco Fornai; Giuseppe Battaglia; Daniela Melchiorri; Suzanne Zukin; Ferdinando Nicoletti; Andrea Caricasole

Expression of Dickkopf-1 (Dkk-1), a secreted protein that negatively modulates the Wnt pathway, was induced in the hippocampus of gerbils and rats subjected to transient global cerebral ischemia as well as in cultured cortical neurons challenged with an excitotoxic pulse. In ischemic animals, the temporal and regional pattern of Dkk-1 expression correlated with the profile of neuronal death, as assessed by Nissl staining and Dkk-1 immunostaining in adjacent hippocampal sections. Treatment of ischemic animals with either Dkk-1 antisense oligonucleotides or lithium ions (which rescue the Wnt pathway acting downstream of the Dkk-1 blockade) protected vulnerable hippocampal neurons against ischemic damage. The same treatments protected cultured cortical neurons against NMDA toxicity. We conclude that induction of Dkk-1 with the ensuing inhibition of the canonical Wnt signaling pathway is required for the development of ischemic and excitotoxic neuronal death.


Journal of Neurochemistry | 2003

Methamphetamine produces neuronal inclusions in the nigrostriatal system and in PC12 cells

Francesco Fornai; Paola Lenzi; Marco Gesi; Paola Soldani; Michela Ferrucci; Gloria Lazzeri; L Capobianco; Giuseppe Battaglia; Antonio De Blasi; Ferdinando Nicoletti; Antonio Paparelli

Mice treated with the psychostimulant methamphetamine (MA) showed the appearance of intracellular inclusions in the nucleus of medium sized striatal neurones and cytoplasm of neurones of the substantia nigra pars compacta but not in the frontal cortex. All inclusions contained ubiquitin, the ubiquitin activating enzyme (E1), the ubiquitin protein ligase (E3‐like, parkin), low and high molecular weight heat shock proteins (HSP 40 and HSP 70). Inclusions found in nigral neurones stained for α‐synuclein, a proteic hallmark of Lewy bodies that are frequently observed in Parkinsons disease and other degenerative disorders. However, differing from classic Lewy bodies, MA‐induced neuronal inclusions appeared as multilamellar bodies resembling autophagic granules. Methamphetamine reproduced this effect in cultured PC12 cells, which offered the advantage of a simple cellular model for the study of the molecular determinants of neuronal inclusions. PC12 inclusions, similar to those observed in nigral neurones, were exclusively localized in the cytoplasm and stained for α‐synuclein. Time‐dependent experiments showed that inclusions underwent a progressive fusion of the external membranes and developed an electrodense core. Inhibition of dopamine synthesis by α‐methyl‐p‐tyrosine (αMpT), or administering the antioxidant S‐apomorphine largely attenuated the formation of inclusions in PC12 cells exposed to MA. Inclusions were again observed when αMpT‐treated cells were loaded with l‐DOPA, which restored intracellular dopamine levels.


Neuron | 2005

CAPS1 Regulates Catecholamine Loading of Large Dense-Core Vesicles

Dina Speidel; Cathrin E. Bruederle; Carsten Enk; Thomas Voets; Frederique Varoqueaux; Kerstin Reim; Ute Becherer; Francesco Fornai; Stefano Ruggieri; Yvonne Holighaus; Eberhard Weihe; Dieter Bruns; Nils Brose; Jens Rettig

CAPS1 is thought to play an essential role in mediating exocytosis from large dense-core vesicles (LDCVs). We generated CAPS1-deficient (KO) mice and studied exocytosis in a model system for Ca2+-dependent LDCV secretion, the adrenal chromaffin cell. Adult heterozygous CAPS1 KO cells display a gene dosage-dependent decrease of CAPS1 expression and a concomitant reduction in the number of docked vesicles and secretion. Embryonic homozygous CAPS1 KO cells show a strong reduction in the frequency of amperometrically detectable release events of transmitter-filled vesicles, while the total number of fusing vesicles, as judged by capacitance recordings or total internal reflection microscopy, remains unchanged. We conclude that CAPS1 is required for an essential step in the uptake or storage of catecholamines in LDCVs.

Collaboration


Dive into the Francesco Fornai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefano Ruggieri

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carla L. Busceti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge