Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Fresi is active.

Publication


Featured researches published by Francesco Fresi.


Journal of Lightwave Technology | 2013

Push-Pull Defragmentation Without Traffic Disruption in Flexible Grid Optical Networks

Filippo Cugini; Francesco Paolucci; Gianluca Meloni; Gianluca Berrettini; Marco Secondini; Francesco Fresi; Nicola Sambo; L. Poti; Piero Castoldi

In flexi-grid optical networks, fragmentation of spectrum resources may significantly affect the overall network efficiency. Effective techniques for defragmentation (i.e., re-optimization) are then required to limit the wasting of spectrum resources. However, current defragmentation techniques can only be implemented thanks to the presence of additional resources, such as spare expensive transponders. In this study, we propose, discuss and evaluate a novel defragmentation technique called push-pull. The technique is based on dynamic lightpath frequency retuning upon proper reconfiguration of allocated spectrum resources. It does not require additional transponders and does not determine traffic disruption. All the relevant technological limitations that may affect the push-pull applicability are discussed in the context of both optically-amplified direct and coherent detection systems. The technique is then successfully demonstrated in two different flexi-grid network testbeds, reproducing the two aforementioned scenarios. In particular, the reoptimization of a 10 Gb/s OOK lightpath is safely completed in few seconds (mainly due just to node configuration latencies) without experiencing any traffic disruption. Similarly, the push-pull is successfully performed on a 100 Gb/s PM-QPSK lightpath, providing no traffic disruption.


Journal of Lightwave Technology | 2014

Programmable Transponder, Code and Differentiated Filter Configuration in Elastic Optical Networks

Nicola Sambo; Gianluca Meloni; Francesco Paolucci; Filippo Cugini; Marco Secondini; Francesco Fresi; Luca Poti; Piero Castoldi

Next generation optical networks will require high levels of flexibility both at the data and control planes, being able to fit rate, bandwidth, and optical reach requirements of different connections. Optical transmission should be able to support very high rates (e.g., 1 Tb/s) and to be distance adaptive while optimizing spectral efficiency (i.e., the information rate transmitted over a given bandwidth). Similarly, the control plane should be capable of performing effective routing and spectrum assignment as well as proper selection of the transmission parameters (e.g., modulation format) depending on the required optical reach. In this paper we present and demonstrate a software-defined super-channel transmission based on time frequency packing and on the proposed differentiated filter configuration (DFC). Time frequency packing is a technique able to achieve high spectral efficiency even with low-order modulation formats (e.g., quadrature phase-shift keying). It consists in sending pulses that overlap in time or frequency or both to achieve high spectral efficiency. Coding and detection are properly designed to account for the introduced inter-symbol and inter-carrier interference. We present a software defined network (SDN) controller that sets transmission parameters (e.g., code rate) both at the transmitter and the receiver side. In particular, at the transmitter side, a programmable encoder adding redundancy to the data is controlled by SDN. At the receiver side, the digital signal processing is set by SDN based on the selected transmission parameters (e.g., code rate). Thus, extensions to the OpenFlow architectures are presented to control super-channel transmission based on time frequency packing. Then, the SDN-based DFC is proposed. According to DFC, the passband of the filters traversed by the same connection can be configured to different values. Experiments including data and control planes are shown to demonstrate the feasibility of optical-reach-adaptive super-channel at 1 Tb/s controlled by extended OpenFlow. Then, the effectiveness of the proposed SDN-based DFC is demonstrated in a testbed with both wavelength selective switches and spectrum selective switches, where filters traversed by a connection requires different passband values. Extended OpenFlow messages for time frequency packing and supporting DFC have been captured and shown in the paper.


european conference and exhibition on optical communications | 2012

Casting 1 Tb/s DP-QPSK communication into 200 GHz bandwidth

Luca Poti; Gianluca Meloni; Gianluca Berrettini; Francesco Fresi; Marco Secondini; Tommaso Foggi; Giulio Colavolpe; Enrico Forestieri; Antonio D'Errico; Fabio Cavaliere; Roberto Sabella; Giancarlo Prati

We demonstrate the feasibility of a novel time-frequency packing technique to implement DP-QPSK communication with a record spectral efficiency ranging from 5.14 to 4.3 bit/s/Hz over a distance ranging from 3000 km to 5200 km of uncompensated standard fiber, respectively.


IEEE Journal of Selected Topics in Quantum Electronics | 2007

Photonic Combinatorial Network for Contention Management in 160 Gb/s-Interconnection Networks Based on All-Optical 2

Mirco Scaffardi; Nicola Andriolli; Gianluca Meloni; Gianluca Berrettini; Francesco Fresi; Piero Castoldi; Luca Poti; Antonella Bogoni

A modular photonic interconnection network based on a combination of basic 2times2 all-optical nodes including a photonic combinatorial network for the packet contention management is presented. The proposed architecture is synchronous, can handle optical time division multiplexed (OTDM) packets up to 160 Gb/s, exhibits self-routing capability, and very low switching latency. In such a scenario, OTDM has to be preferred to wavelength division multiplexing (WDM) because in the former case, the instantaneous packet power carries the information related to only one bit, making the signal processing based on instantaneous nonlinear interactions between packets and control signals more efficient. Moreover, OTDM can be used in interconnection networks without caring about the propagation impairments because of the very short length (<100 m) of the links in these networks. For such short-range networks, the packet synchronization can be solved at the network boundary in the electronic domain without the need of complex optical synchronizers. In this paper, we focus on a photonic combinatorial network able to detect the contentions, and to optically drive the contention resolution block and the switching control block. The implementation of the photonic combinatorial network is based on semiconductor devices, which makes the solution very promising in terms of compactness, stability, and power consumption. This implementation represents the first example of complex photonic combinatorial network for ultrafast digital processing. The network performance has been investigated for bit streams at 10 Gb/s in terms of bit error rate (BER) and contrast ratio. Moreover, the suitability of the 2times2 photonic node architecture exploiting the earlier mentioned combinatorial network has been verified at a bit rate up to 160 Gb/s. In this way, the potential of photonic digital processing for the next generation broad band and flexible interconnection networks has been demonstrated.


Optics Letters | 2007

\,\times\,

Young-Geun Han; Francesco Fresi; Luca Poti; Ju Han Lee; Xinyong Dong

We investigate a flexibly tunable multiwavelength semiconductor-optical-amplifier-based fiber ring laser with continuous wavelength spacing controllability incorporating a superimposed chirped fiber Bragg grating (CFBG). The wavelength spacing of a superimposed CFBG can be continuously controlled by symmetrically modifying the chirp bandwidth of the grating with the specially designed apparatus. We achieve a wide and continuous tuning range of the wavelength spacing from 0.35 to 0.78 nm. The continuous tunability of the wavelength spacing is measured to be ~ +/-0.033 nm/mm. By controlling the reflection bandwidth of the tunable CFBG, we can independently adjust the number of lasing channels from 2 to 23 at the wavelength spacing of 0.51 nm.


Journal of Lightwave Technology | 2015

2 Switching Elements

Marco Secondini; Tommaso Foggi; Francesco Fresi; Gianluca Meloni; Fabio Cavaliere; Giulio Colavolpe; Enrico Forestieri; Luca Poti; Roberto Sabella; Giancarlo Prati

Time-frequency packing (TFP) transmission provides the highest achievable spectral efficiency with a constrained symbol alphabet and detector complexity. In this paper, the application of the TFP technique to fiber-optic systems is investigated and experimentally demonstrated. The main theoretical aspects, design guidelines, and implementation issues are discussed, focusing on those aspects which are peculiar to TFP systems. In particular, adaptive compensation of propagation impairments, matched filtering, and maximum a posteriori probability detection are obtained by a combination of a two-dimensional equalizer and four eight-state parallel Bahl-Cocke-Jelinek-Raviv (BCJR) detectors. A novel algorithm that ensures adaptive equalization, channel estimation, and a proper distribution of tasks between the equalizer and BCJR detectors is proposed. A set of irregular low-density parity-check codes with different rates is designed to operate at low error rates and approach the spectral efficiency limit achievable by TFP at different signal-to-noise ratios. An experimental demonstration of the designed system is finally provided with five dual-polarization QPSK-modulated optical carriers, densely packed in a 100-GHz bandwidth, employing a recirculating loop to test the performance of the system at different transmission distances.


Journal of Lightwave Technology | 2010

Continuously spacing-tunable multiwavelength semiconductor-optical-amplifier-based fiber ring laser incorporating a superimposed chirped fiber Bragg grating

Saju Thomas; Antonio Malacarne; Francesco Fresi; Luca Poti; José Azaña

We experimentally demonstrate a fiber-optic programmable optical pulse shaper based on time-domain binary phase-only linear filtering, which is capable of switching picosecond pulse shapes at unprecedented sub-GHz rates by simply updating the binary signal driving an electro-optic phase-modulator (EO-PM). The required binary phase-filtering functions are computed using a genetic algorithm (GA). One limitation of the binary phase-filtering approach is the inherent symmetry of the output temporal shapes. To generate fully arbitrary time-domain intensity profiles (including asymmetric temporal waveforms) we must employ a multi-level phase-filtering function. However, the size of the solution-space and complexity of the computation multiplies to manifolds as the number of levels in the phase-filtering function increases. Here we numerically demonstrate a simple strategy, by combining the Gerchberg-Saxton algorithm (GSA) and GA, for the fast computation of multi-level phase-filtering functions. The performance of this approach is numerically proven by generating different asymmetric pulse shapes of practical interest, assuming experimentally feasible design parameters.


Optics Letters | 2009

Optical Time–Frequency Packing: Principles, Design, Implementation, and Experimental Demonstration

Saju Thomas; Antonio Malacarne; Francesco Fresi; Luca Poti; Antonella Bogoni; José Azaña

We demonstrate a fiber-based programmable arbitrary picosecond optical pulse shaper using binary phase-only linear filtering. The reconfigurable filtering operation is implemented in the time domain using an electro-optical phase modulator driven by a high-speed bit pattern generator. The required binary phase code is designed using a genetic algorithm. Precise matching between the predispersive and postdispersive media in the system is achieved by use of a single linearly chirped fiber Bragg grating subsequently operated from its two input ends. As a proof of concept, different pulse waveforms of practical interest are generated using this new pulse shaper.


IEEE\/OSA Journal of Optical Communications and Networking | 2015

Fiber-Based Programmable Picosecond Optical Pulse Shaper

Nicola Sambo; Francesco Paolucci; Gianluca Meloni; Francesco Fresi; Luca Poti; Piero Castoldi

Super-channel (or multi-carrier) transmission is today one of the most promising techniques for the support of high line rates, which are required to satisfy the massive increase of Internet traffic. Moreover, flex-grid optical networks seem to be the candidates for backbone networks by enabling high spectral efficiency thanks to the adoption of the ITUT flex-grid. Such networks may suffer from spectrum fragmentation, which can prevent the establishment of new connections. For this reason, defragmentation techniques (i.e., reoptimization) have been widely studied, especially considering single-carrier transmission. Inparallel, the software defined networking (SDN) paradigm and the active stateful path computation element (PCE) are emerging as candidates for the control of next-generation optical networks. Such architectures are also particularly suitable in the case of defragmentation since they enable the controller to trigger reoptimization procedures. In this paper, we investigate defragmentation in the presence of super-channels, at both the control and data planes. We propose and experimentally demonstrate a technique based on a periodically poled lithium niobate waveguide to achieve both frequency conversion and defragmentation in elastic (or flex-grid) optical networks. Its peculiarity is that it is suitable for super-channels because it avoids detrimental subcarrier overlapping during a frequency shift. SDN with the OpenFlow protocol is discussed for the control of such operations, as well as the active stateful PCE and generalized multi-protocol label switching (GMPLS). The frequency conversion and defragmentation techniques are demonstrated in a lab trial considering a 200 Gb/s super-channel and extended OpenFlow for the control plane. No loss of data is experienced.


Optics Letters | 2012

Programmable fiber-based picosecond optical pulse shaper using time-domain binary phase-only linear filtering

Antonio Malacarne; Francesco Fresi; Jonathan Klamkin; Luca Poti

A customized IQ modulator driven by equal-amplitude binary signals for generating offset-free 16-quadrature amplitude modulation (QAM) is proposed and validated through simulations. The incorporation of tunable splitters demonstrates the feasibility of the transmitter and enables more efficient constellations such as hexagonal 16-QAM.

Collaboration


Dive into the Francesco Fresi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gianluca Meloni

Sant'Anna School of Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicola Sambo

Sant'Anna School of Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Gianluca Berrettini

Sant'Anna School of Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Mirco Scaffardi

Sant'Anna School of Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Piero Castoldi

Sant'Anna School of Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Paolucci

Sant'Anna School of Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Antonio Malacarne

Sant'Anna School of Advanced Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge