Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Fusco is active.

Publication


Featured researches published by Francesco Fusco.


internet measurement conference | 2010

High speed network traffic analysis with commodity multi-core systems

Francesco Fusco; Luca Deri

Multi-core systems are the current dominant trend in computer processors. However, kernel network layers often do not fully exploit multi-core architectures. This is due to issues such as legacy code, resource competition of the RX-queues in network interfaces, as well as unnecessary memory copies between the OS layers. The result is that packet capture, the core operation in every network monitoring application, may even experience performance penalties when adapted to multi-core architectures. This work presents common pitfalls of network monitoring applications when used with multi-core systems, and presents solutions to these issues. We describe the design and implementation of a novel multi-core aware packet capture kernel module that enables monitoring applications to scale with the number of cores. We showcase that we can achieve high packet capture performance on modern commodity hardware.


IEEE Control Systems Magazine | 2014

Energy-Maximizing Control of Wave-Energy Converters: The Development of Control System Technology to Optimize Their Operation

John Ringwood; Giorgio Bacelli; Francesco Fusco

With the recent sharp increases in the price of oil, issues of security of supply, and pressure to honor greenhouse gas emission limits (e.g., the Kyoto protocol), much attention has turned to renewable energy sources to fulfill future increasing energy needs. Wind energy, now a mature technology, has had considerable proliferation, with other sources, such as biomass, solar, and tidal, enjoying somewhat less deployment. Waves provide previously untapped energy potential, and wave energy has been shown to have some favorable variability properties (a perennial issue with many renewables, especially wind), especially when combined with wind energy [1].


IEEE Transactions on Sustainable Energy | 2014

Hierarchical Robust Control of Oscillating Wave Energy Converters With Uncertain Dynamics

Francesco Fusco; John Ringwood

Energy-maximizing controllers for wave energy devices are normally based on linear hydrodynamic device models. Such models ignore nonlinear effects which typically manifest themselves for large device motion (typical in this application) and may also include other modeling errors. The effectiveness of a controller is, in general, determined by the match between the model the controller is based on and the actual system dynamics. This match becomes especially critical when the controller is highly tuned to the system. In this paper, we present a methodology for reducing this sensitivity to modeling errors and nonlinear effects by the use of a hierarchical robust controller, which shows small sensitivity to modeling errors, but allows good energy maximization to be recovered through a passivity-based control approach.


traffic monitoring and analysis | 2012

tsdb: a compressed database for time series

Luca Deri; Simone Mainardi; Francesco Fusco

Large-scale network monitoring systems require efficient storage and consolidation of measurement data. Relational databases and popular tools such as the Round-Robin Database show their limitations when handling a large number of time series. This is because data access time greatly increases with the cardinality of data and number of measurements. The result is that monitoring systems are forced to store very few metrics at low frequency in order to grant data access within acceptable time boundaries. This paper describes a novel compressed time series database named tsdb whose goal is to allow large time series to be stored and consolidated in realtime with limited disk space usage. The validation has demonstrated the advantage of tsdb over traditional approaches, and has shown that tsdb is suitable for handling a large number of time series.


internet measurement conference | 2011

vPF_RING: towards wire-speed network monitoring using virtual machines

Alfredo Cardigliano; Luca Deri; Joseph Gasparakis; Francesco Fusco

The demand of highly flexible and easy to deploy network monitoring systems has pushed companies toward software based network monitoring probes implemented with commodity hardware rather than with expensive and highly specialized network devices. Deploying software probes under virtual machines executed on the same physical box is attractive for reducing deployment costs and for simplifying the management of advanced network monitoring architectures built on top of heterogeneous monitoring tools (i.e. Intrusion Detection Systems and Performance Monitoring Systems). Unfortunately, software probes are usually not able to meet the performance requirements when deployed in virtualized environments as virtualization introduces severe performance bottlenecks when performing packet capture, which is the core activity of passive network monitoring systems. This paper covers the design and implementation of vPF_RING, a novel framework for efficiently capturing packets on virtual machines running on commodity hardware. This solution allows network administrators to exploit the benefits of virtualization such as reduced costs and centralized administration, while preserving the ability to capture packets at wire speed even when deploying applications in virtual machines. The validation process has demonstrated that this solution can be profitably used for multi-gigabit network monitoring, paving the way to low-cost virtualized monitoring systems.


internet measurement conference | 2013

Indexing million of packets per second using GPUs

Francesco Fusco; Michail Vlachos; Xenofontas A. Dimitropoulos; Luca Deri

Network traffic recorders are devices that record massive volumes of network traffic for security applications, like retrospective forensic investigations. When deployed over very high-speed networks, traffic recorders must process and store millions of packets per second. To enable interactive explorations of such large traffic archives, packet indexing mechanisms are required. Indexing packets at wire rates (10 Gbps and above) on commodity hardware imposes unparalleled requirements for high throughput index creation. Such indexing throughputs are presently untenable with modern indexing technologies and current processor architectures. In this work, we propose to intelligently offload indexing to commodity General Processing Units (GPUs). We introduce algorithms for building compressed bitmap indexes in real time on GPUs and show that we can achieve indexing throughputs of up to 185 millions records per second, which is an improvement by one order of magnitude compared to the state-of-the-art. This shows that indexing network traffic at multi-10-Gbps rates is well within reach.


international conference on computer communications | 2013

10 Gbit line rate packet-to-disk using n2disk

Luca Deri; Alfredo Cardigliano; Francesco Fusco

Capturing packets to disk at line rate and with high precision packet timestamping is required whenever an evidence of network communications has to be provided. Typical applications of long-term network traffic repositories are network troubleshooting, analysis of security violations, and analysis of high-frequency trading communications. Appliances for 10 Gbit packet capture to disk are often based on dedicated network adapters, and therefore very expensive, making them usable only in specific domains. This paper covers the design and implementation of n2disk, a packet capture to disk application, capable of dumping 10 Gbit traffic to disk using commodity hardware and open-source software. In addition to packet capture, n2disk is able to index the traffic at line-rate during capture, enabling users to efficiently search specific packets in network traffic dump files.


internet measurement conference | 2012

RasterZip: compressing network monitoring data with support for partial decompression

Francesco Fusco; Michail Vlachos; Xenofontas A. Dimitropoulos

Network traffic archival solutions are fundamental for a number of emerging applications that require: a) efficient storage of high-speed streams of traffic records and b) support for interactive exploration of massive datasets. Compression is a fundamental building block for any traffic archival solution. However, present solutions are tied to general-purpose compressors, which do not exploit patterns of network traffic data and require to decompress a lot of redundant data for high selectivity queries. In this work we introduce RasterZIP, a novel domain-specific compressor designed for network traffic monitoring data. RasterZIP uses an optimized lossless encoding that exploits patterns of traffic data, like the fact that IP addresses tend to share a common prefix. RasterZIP also introduces a novel decompression scheme that accelerates highly selective queries targeting a small portion of the dataset. With our solution we can achieve high-speed on-the-fly compression of more than half a million traffic records per second. We compare RasterZIP with the fastest Lempel-Ziv-based compressor and show that our solution improves the state-of-the-art both in terms of compression ratios and query response times without introducing penalty in any other performance metric.


acm special interest group on data communication | 2012

pcapIndex: an index for network packet traces with legacy compatibility

Francesco Fusco; Xenofontas A. Dimitropoulos; Michail Vlachos; Luca Deri

Long-term historical analysis of captured network traffic is a topic of great interest in network monitoring and network security. A critical requirement is the support for fast discovery of packets that satisfy certain criteria within large-scale packet repositories. This work presents the first indexing scheme for network packet traces based on compressed bitmap indexing principles. Our approach supports very fast insertion rates and results in compact index sizes. The proposed indexing methodology builds upon libpcap, the de-facto reference library for accessing packet-trace repositories. Our solution is therefore backward compatible with any solution that uses the original library. We experience impressive speedups on packet-trace search operations: our experiments suggest that the index-enabled libpcap may reduce the packet retrieval time by more than 1100 times.


Archive | 2011

Wire-Speed Hardware-Assisted Traffic Filtering with Mainstream Network Adapters

Luca Deri; Joseph Gasparakis; Peter P. Waskiewicz; Francesco Fusco

Modern computer architectures are founded on multi-core processors. In order to efficiently process network traffic, it is necessary to dynamically split high-speed packet streams across cores based on the monitoring goal. Most network adapters are multi-core aware but offer limited facilities for assigning packets to processor cores. In this paper we introduce a hybrid traffic analysis framework that leverages flexible packet balancing mechanisms available on recent 10 Gbit commodity network adapters not yet exploited by operating systems. The main contribution of this paper is an open source hardware-assisted software layer for dynamically configuring packet balancing policies in order to fully exploit multi-core systems and enable 10 Gbit wire-speed network traffic analysis.

Collaboration


Dive into the Francesco Fusco's collaboration.

Researchain Logo
Decentralizing Knowledge