Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Giannino is active.

Publication


Featured researches published by Francesco Giannino.


New Phytologist | 2015

Inhibitory and toxic effects of extracellular self-DNA in litter : A mechanism for negative plant-soil feedbacks?

Stefano Mazzoleni; Giuliano Bonanomi; Guido Incerti; Maria Luisa Chiusano; Pasquale Termolino; Antonio Mingo; Mauro Senatore; Francesco Giannino; Fabrizio Cartenì; Max Rietkerk; Virginia Lanzotti

Plant-soil negative feedback (NF) is recognized as an important factor affecting plant communities. The objectives of this work were to assess the effects of litter phytotoxicity and autotoxicity on root proliferation, and to test the hypothesis that DNA is a driver of litter autotoxicity and plant-soil NF. The inhibitory effect of decomposed litter was studied in different bioassays. Litter biochemical changes were evaluated with nuclear magnetic resonance (NMR) spectroscopy. DNA accumulation in litter and soil was measured and DNA toxicity was assessed in laboratory experiments. Undecomposed litter caused nonspecific inhibition of root growth, while autotoxicity was produced by aged litter. The addition of activated carbon (AC) removed phytotoxicity, but was ineffective against autotoxicity. Phytotoxicity was related to known labile allelopathic compounds. Restricted (13) C NMR signals related to nucleic acids were the only ones negatively correlated with root growth on conspecific substrates. DNA accumulation was observed in both litter decomposition and soil history experiments. Extracted total DNA showed evident species-specific toxicity. Results indicate a general occurrence of litter autotoxicity related to the exposure to fragmented self-DNA. The evidence also suggests the involvement of accumulated extracellular DNA in plant-soil NF. Further studies are needed to further investigate this unexpected function of extracellular DNA at the ecosystem level and related cellular and molecular mechanisms.


Mountain Research and Development | 2010

Solid Waste and Water Quality Management Models for Sagarmatha National Park and Buffer Zone, Nepal Implementation of a Participatory Modeling Framework

Emanuela Chiara Manfredi; Bastian Flury; Gaetano Viviano; Sudeep Thakuri; Sanjay Nath Khanal; Pramod Kumar Jha; Ramesh Kumar Maskey; Rijan Bhakta Kayastha; Kumud Raj Kafle; Silu Bhochhibhoya; Narayan Prasad Ghimire; Bharat Babu Shrestha; Gyanendra Chaudhary; Francesco Giannino; Fabrizio Cartenì; Stefano Mazzoleni; Franco Salerno

Abstract The problem of supporting decision- and policy-makers in managing issues related to solid waste and water quality was addressed within the context of a participatory modeling framework in the Sagarmatha National Park and Buffer Zone in Nepal. We present the main findings of management-oriented research projects conducted within this framework, thus providing an overview of the current situation in the park regarding solid waste and water quality issues. We found that most of the solid waste generated in the park is composed of organic matter, paper, and minor reused waste that is mainly reused for cattle feeding and manure, while disposal of other nondegradable categories of collected waste (glass, metal, and plastic) is not properly managed. Particularly, burning or disposal in open dumps poses a great hazard to environmental, human, and animal health, as most dump sites situated close to water courses are prone to regular flooding during the rainy season, thereby directly contaminating river water. Pollutants and microbiological contamination in water bodies were found and anthropogenic activities and hazardous practices such as solid waste dump sites, open defecation, and poor conditions of existing septic tanks are suggested as possibly affecting water quality. Collection of these data on solid waste and water quality and compilation of management information on the targeted social-ecological system allowed us to develop consensus-building models to be used as management supporting tools. By implementing such models, we were able to simulate scenarios identifying and evaluating possible management solutions and interventions in the park. This work reveals insights into general dynamics that can support the quest for solutions to waste and water quality management problems in other protected areas and mountain landscapes where traditional livelihood and land use patterns are changing under the influence of a growing population, changing consumption patterns, and international tourism.


Journal of Theoretical Biology | 2012

Negative plant soil feedback explaining ring formation in clonal plants

Fabrizio Cartenì; Addolorata Marasco; Giuliano Bonanomi; Stefano Mazzoleni; Max Rietkerk; Francesco Giannino

Ring shaped patches of clonal plants have been reported in different environments, but the mechanisms underlying such pattern formation are still poorly explained. Water depletion in the inner tussocks zone has been proposed as a possible cause, although ring patterns have been also observed in ecosystems without limiting water conditions. In this work, a spatially explicit model is presented in order to investigate the role of negative plant-soil feedback as an additional explanation for ring formation. The model describes the dynamics of the plant biomass in the presence of toxicity produced by the decomposition of accumulated litter in the soil. Our model qualitatively reproduces the emergence of ring patterns of a single clonal plant species during colonisation of a bare substrate. The model admits two homogeneous stationary solutions representing bare soil and uniform vegetation cover which depend only on the ratio between the biomass death and growth rates. Moreover, differently from other plant spatial patterns models, but in agreement with real field observations of vegetation dynamics, we demonstrated that the pattern dynamics always lead to spatially homogeneous vegetation covers without creation of stable Turing patterns. Analytical results show that ring formation is a function of two main components, the plant specific susceptibility to toxic compounds released in the soil by the accumulated litter and the decay rate of these same compounds, depending on environmental conditions. These components act at the same time and their respective intensities can give rise to the different ring structures observed in nature, ranging from slight reductions of biomass in patch centres, to the appearance of marked rings with bare inner zones, as well as the occurrence of ephemeral waves of plant cover. Our results highlight the potential role of plant-soil negative feedback depending on decomposition processes for the development of transient vegetation patterns.


New Phytologist | 2015

Inhibitory effects of extracellular self-DNA: a general biological process?

Stefano Mazzoleni; Fabrizio Cartenì; Giuliano Bonanomi; Mauro Senatore; Pasquale Termolino; Francesco Giannino; Guido Incerti; Max Rietkerk; Virginia Lanzotti; Maria Luisa Chiusano

Self-inhibition of growth has been observed in different organisms, but an underlying common mechanism has not been proposed so far. Recently, extracellular DNA (exDNA) has been reported as species-specific growth inhibitor in plants and proposed as an explanation of negative plant-soil feedback. In this work the effect of exDNA was tested on different species to assess the occurrence of such inhibition in organisms other than plants. Bioassays were performed on six species of different taxonomic groups, including bacteria, fungi, algae, plants, protozoa and insects. Treatments consisted in the addition to the growth substrate of conspecific and heterologous DNA at different concentration levels. Results showed that treatments with conspecific DNA always produced a concentration dependent growth inhibition, which instead was not observed in the case of heterologous DNA. Reported evidence suggests the generality of the observed phenomenon which opens new perspectives in the context of self-inhibition processes. Moreover, the existence of a general species-specific biological effect of exDNA raises interesting questions on its possible involvement in self-recognition mechanisms. Further investigation at molecular level will be required to unravel the specific functioning of the observed inhibitory effects.


Bulletin of Mathematical Biology | 2014

Vegetation Pattern Formation Due to Interactions Between Water Availability and Toxicity in Plant–Soil Feedback

Addolorata Marasco; Annalisa Iuorio; Fabrizio Cartenì; Giuliano Bonanomi; Daniel M. Tartakovsky; Stefano Mazzoleni; Francesco Giannino

Development of a comprehensive theory of the formation of vegetation patterns is still in progress. A prevailing view is to treat water availability as the main causal factor for the emergence of vegetation patterns. While successful in capturing the occurrence of multiple vegetation patterns in arid and semiarid regions, this hypothesis fails to explain the presence of vegetation patterns in humid environments. We explore the rich structure of a toxicity-mediated model of the vegetation pattern formation. This model consists of three PDEs accounting for a dynamic balance between biomass, water, and toxic compounds. Different (ecologically feasible) regions of the model’s parameter space give rise to stable spatial vegetation patterns in Turing and non-Turing regimes. Strong negative feedback gives rise to dynamic spatial patterns that continuously move in space while retaining their stable topology.


Plant Signaling & Behavior | 2016

Self-DNA inhibitory effects: Underlying mechanisms and ecological implications

Fabrizio Cartenì; Giuliano Bonanomi; Francesco Giannino; Guido Incerti; Christian E. Vincenot; Maria Luisa Chiusano; Stefano Mazzoleni

ABSTRACT DNA is usually known as the molecule that carries the instructions necessary for cell functioning and genetic inheritance. A recent discovery reported a new functional role for extracellular DNA. After fragmentation, either by natural or artificial decomposition, small DNA molecules (between ∼50 and ∼2000 bp) exert a species specific inhibitory effect on individuals of the same species. Evidence shows that such effect occurs for a wide range of organisms, suggesting a general biological process. In this paper we explore the possible molecular mechanisms behind those findings and discuss the ecological implications, specifically those related to plant species coexistence.


Microbial Cell Factories | 2015

A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures

Stefano Mazzoleni; Carmine Landi; Fabrizio Cartenì; Elisabetta de Alteriis; Francesco Giannino; Lucia Paciello; Palma Parascandola

AbstractBackgroundMicrobial population dynamics in bioreactors depend on both nutrients availability and changes in the growth environment. Research is still ongoing on the optimization of bioreactor yields focusing on the increase of the maximum achievable cell density.ResultsA new process-based model is proposed to describe the aerobic growth of Saccharomyces cerevisiae cultured on glucose as carbon and energy source. The model considers the main metabolic routes of glucose assimilation (fermentation to ethanol and respiration) and the occurrence of inhibition due to the accumulation of both ethanol and other self-produced toxic compounds in the medium. Model simulations reproduced data from classic and new experiments of yeast growth in batch and fed-batch cultures. Model and experimental results showed that the growth decline observed in prolonged fed-batch cultures had to be ascribed to self-produced inhibitory compounds other than ethanol.ConclusionsThe presented results clarify the dynamics of microbial growth under different feeding conditions and highlight the relevance of the negative feedback by self-produced inhibitory compounds on the maximum cell densities achieved in a bioreactor.


Frontiers in Plant Science | 2016

Spatial Self-Organization of Vegetation Subject to Climatic Stress—Insights from a System Dynamics—Individual-Based Hybrid Model

Christian E. Vincenot; Fabrizio Cartenì; Stefano Mazzoleni; Max Rietkerk; Francesco Giannino

In simulation models of populations or communities, individual plants have often been obfuscated in favor of aggregated vegetation. This simplification comes with a loss of biological detail and a smoothing out of the demographic noise engendered by stochastic individual-scale processes and heterogeneities, which is significant among others when studying the viability of small populations facing challenging fluctuating environmental conditions. This consideration has motivated the development of precise plant-centered models. The accuracy gained in the representation of plant biology has then, however, often been balanced by the disappearance in models of important plant-soil interactions (esp. water dynamics) due to the inability of most individual-based frameworks to simulate complex continuous processes. In this study, we used a hybrid modeling approach, namely integrated System Dynamics (SD)—Individual-based (IB), to illustrate the importance of individual plant dynamics to explain spatial self-organization of vegetation in arid environments. We analyzed the behavior of this model under different parameter sets either related to individual plant properties (such as seed dispersal distance and reproductive age) or the environment (such as intensity and yearly distribution of precipitation events). While the results of this work confirmed the prevailing theory on vegetation patterning, they also revealed the importance therein of plant-level processes that cannot be rendered by reaction-diffusion models. Initial spatial distribution of plants, reproductive age, and average seed dispersal distance, by impacting patch size and vegetation aggregation, affected pattern formation and population survival under climatic variations. Besides, changes in precipitation regime altered the demographic structure and spatial organization of vegetation patches by affecting plants differentially depending on their age and biomass. Water availability influenced non-linearly total biomass density. Remarkably, lower precipitation resulted in lower mean plant age yet higher mean individual biomass. Moreover, seasonal variations in rainfall greater than a threshold (here, ±0.45 mm from the 1.3 mm baseline) decreased mean total biomass and generated limit cycles, which, in the case of large variations, were preceded by chaotic demographic and spatial behavior. In some cases, peculiar spatial patterns (e.g., rings) were also engendered. On a technical note, the shortcomings of the present model and the benefit of hybrid modeling for virtual investigations in plant science are discussed.


Phytochemistry Reviews | 2014

New perspectives on the use of nucleic acids in pharmacological applications: inhibitory action of extracellular self-DNA in biological systems

Stefano Mazzoleni; Fabrizio Cartenì; Giuliano Bonanomi; Guido Incerti; Maria Luisa Chiusano; Pasquale Termolino; Antonello Migliozzi; Mauro Senatore; Francesco Giannino; Max Rietkerk; Antonio M. Risitano; Virginia Lanzotti

AbstractThe research for new products against pathogens, parasites and infesting species, in both agriculture and medicine, implies huge and increasing scientific, industrial and economic efforts. Traditional approaches are based on random screening procedures searching for bioactive compounds. However, the success of such methodologies in most cases has been strongly limited by side-effects of the potential new drugs, especially toxicity and pharmacological resistance. The use of nucleic acids in drug development has been introduced searching for target-specific effect. In addition, a recent discovery revealed that randomly fragmented extracellular self-DNA may act as highly species-specific inhibitory product for different species, suggesting an unprecedented use of DNA for biological control. On this base, a new scenario of pharmacological applications is discussed.


Archive | 2012

New Modeling Approach to Describe and Predict Carbon Sequestration Dynamics in Agricultural Soils

Stefano Mazzoleni; Giuliano Bonanomi; Francesco Giannino; Guido Incerti; Daniela Piermatteo; Riccardo Spaccini; Alessandro Piccolo

The contribution of agro-ecosystems to carbon sequestration in the form of soil organic matter (SOM) is increasingly considered as a mitigating factor for climate change. The ecosystem carbon storage depends on the balance between C inputs and outflows due to SOM breakdown. SOM decomposition has been reported as mostly affected by temperature and water availability, at global and regional scale, and by C quality at local scale, where climate can be considered relatively uniform. In this work, a new model of SOM decomposition is presented. The SOMDY model is based on an advanced description of SOM chemical quality by 13C-CPMAS NMR instead of traditional C/N ratio. The model includes also the effects of physical aggregation of organic matter. SOMDY was calibrated on CO2 emission data from extensive field experimental measurements. The simulation results showed the model capability to predict SOM changes during decomposition processes, including the effects of addition of organic amendments (e.g., compost applications, crop residual burial), as well as the impact of different tillage practices on the physical structure of soil aggregation.

Collaboration


Dive into the Francesco Giannino's collaboration.

Top Co-Authors

Avatar

Stefano Mazzoleni

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Fabrizio Cartenì

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Giuliano Bonanomi

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerardo Toraldo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Constantinos I. Siettos

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar

Salvatore Cuomo

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge