Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco M. Baccino is active.

Publication


Featured researches published by Francesco M. Baccino.


Journal of Clinical Investigation | 1993

Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model.

Paola Costelli; Neus Carbó; Luciana Tessitore; Gregory J. Bagby; Francisco J. López-Soriano; Josep M. Argilés; Francesco M. Baccino

Rats bearing the Yoshida AH-130 ascites hepatoma showed enhanced fractional rates of protein degradation in gastrocnemius muscle, heart, and liver, while fractional synthesis rates were similar to those in non-tumor bearing rats. This hypercatabolic pattern was associated with marked perturbations of the hormonal homeostasis and presence of tumor necrosis factor in the circulation. The daily administration of a goat anti-murine TNF IgG to tumor-bearing rats decreased protein degradation rates in skeletal muscle, heart, and liver as compared with tumor-bearing rats receiving a nonimmune goat IgG. The anti-TNF treatment was also effective in attenuating early perturbations in insulin and corticosterone homeostasis. Although these results suggest that tumor necrosis factor plays a significant role in mediating the changes in protein turnover and hormone levels elicited by tumor growth, the inability of such treatment to prevent a reduction in body weight implies that other mediators or tumor-related events were also involved.


Annals of Surgery | 2003

Increased muscle proteasome activity correlates with disease severity in gastric cancer patients

Maurizio Bossola; Maurizio Muscaritoli; Paola Costelli; Gabriella Grieco; Gabriella Bonelli; Fabio Pacelli; Filippo Rossi Fanelli; Giovanni Battista Doglietto; Francesco M. Baccino

ObjectiveTo investigate the state of activation of the ATP-ubiquitin-dependent proteolytic system in the skeletal muscle of gastric cancer patients. Summary Background DataMuscle wasting in experimental cancer cachexia is frequently associated with hyperactivation of the ATP-dependent ubiquitin-proteasome proteolytic system. Increased muscle ubiquitin mRNA levels have been previously shown in gastric cancer patients, suggesting that this proteolytic system might be modulated also in human cancer. MethodsBiopsies of the rectus abdominis muscle were obtained intraoperatively from 23 gastric cancer patients and 14 subjects undergoing surgery for benign abdominal diseases, and muscle ubiquitin mRNA expression and proteasome proteolytic activities were assessed. ResultsMuscle ubiquitin mRNA was hyperexpressed in gastric cancer patients compared to controls. In parallel, three proteasome proteolytic activities (CTL, chymotrypsin-like; TL, trypsin-like; PGP, peptidyl-glutamyl-peptidase) significantly increased in gastric cancer patients with respect to controls. Advanced tumor stage, poor nutritional status, and age more than 50 years were associated with significantly higher CTL activity but had no influence on TL and PGP activity. ConclusionsThese results confirm the involvement of the ubiquitin-proteasome proteolytic system in the pathogenesis of muscle protein hypercatabolism in cancer cachexia. The observation that perturbations of this pathway in gastric cancer patients occur even before clinical evidence of body wasting supports the thinking that specific pharmacologic and metabolic approaches aimed at counteracting the upregulation of this pathway should be undertaken as early as cancer is diagnosed.


Biochimica et Biophysica Acta | 2001

Interleukin-15 mediates reciprocal regulation of adipose and muscle mass: a potential role in body weight control

Neus Carbó; Joaquín López-Soriano; Paola Costelli; Belén Alvarez; Sílvia Busquets; Francesco M. Baccino; LeBris S. Quinn; Francisco J. López-Soriano; Josep M. Argilés

Interleukin (IL)-15 is a cytokine which is highly expressed in skeletal muscle. Cell culture studies have indicated that IL-15 may have an important role in muscle fiber growth and anabolism. However, data concerning the metabolic effects of this cytokine in vivo are lacking. In the present study, IL-15 was administered to adult rats for 7 days. While IL-15 did not cause changes in either muscle mass or muscle protein content, it induced significant changes in the fractional rates of both muscle protein synthesis and degradation, with no net changes in protein accumulation. Additionally, IL-15 administration resulted in a 33% decrease in white adipose tissue mass and a 20% decrease in circulating triacylglycerols; this was associated with a 47% lower hepatic lipogenic rate and a 36% lower plasma VLDL triacylglycerol content. The decrease in white fat induced by IL-15 was in adipose tissue. No changes were observed in the rate of lipolysis as a result of cytokine administration. These findings indicate that IL-15 has significant effects on both protein and lipid metabolism, and suggest that this cytokine may participate in reciprocal regulation of muscle and adipose tissue mass.


Journal of Clinical Investigation | 1995

Muscle protein waste in tumor-bearing rats is effectively antagonized by a beta 2-adrenergic agonist (clenbuterol). Role of the ATP-ubiquitin-dependent proteolytic pathway.

Paola Costelli; Cèlia García-Martínez; Marta Llovera; Neus Carbó; Francisco J. López-Soriano; Neus Agell; Luciana Tessitore; Francesco M. Baccino; Josep M. Argilés

Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.


British Journal of Cancer | 2001

Activation of Ca2+-dependent proteolysis in skeletal muscle and heart in cancer cachexia.

Paola Costelli; R De Tullio; Francesco M. Baccino; E. Melloni

Cachexia is a syndrome characterized by profound tissue wasting that frequently complicates malignancies. In a cancer cachexia model we have shown that protein depletion in the skeletal muscle, which is a prominent feature of the syndrome, is mostly due to enhanced proteolysis. There is consensus on the views that the ubiquitin/proteasome pathway plays an important role in such metabolic response and that cytotoxic cytokines such as TNFα are involved in its triggering (Costelli and Baccino, 2000), yet the mechanisms by which the relevant extracellular signals are transduced into protein hypercatabolism are largely unknown. Moreover, little information is presently available as to the possible involvement in muscle protein waste of the Ca2+-dependent proteolysis, which may provide a rapidly activated system in response to the extracellular signals. In the present work we have evaluated the status of the Ca2+-dependent proteolytic system in the gastrocnemius muscle of AH-130 tumour-bearing rats by assaying the activity of calpain as well as the levels of calpastatin, the natural calpain inhibitor, and of the 130 kDa Ca2+-ATPase, both of which are known calpain substrates. After tumour transplantation, total calpastatin activity progressively declined, while total calpain activity remained unchanged, resulting in a progressively increasing unbalance in the calpain/calpastatin ratio. A decrease was also observed for the 130 kDa plasma membrane form of Ca2+-ATPase, while there was no change in the level of the 90 kDa sarcoplasmic Ca2+-ATPase, which is resistant to the action of calpain. Decreased levels of both calpastatin and 130 kDa Ca2+-ATPase have been also detected in the heart of the tumour-bearers. These observations strongly suggest that Ca2+-dependent proteolysis was activated in the skeletal muscle and heart of tumour-bearing animals and raise the possibility that such activation may play a role in sparking off the muscle protein hypercatabolic response that characterizes cancer cachexia.


American Journal of Pathology | 2013

Autophagic Degradation Contributes to Muscle Wasting in Cancer Cachexia

Fabio Penna; Domiziana Costamagna; Fabrizio Pin; Andrea Camperi; Alessandro Fanzani; Elena Chiarpotto; Gabriella Cavallini; Gabriella Bonelli; Francesco M. Baccino; Paola Costelli

Muscle protein wasting in cancer cachexia is a critical problem. The underlying mechanisms are still unclear, although the ubiquitin-proteasome system has been involved in the degradation of bulk myofibrillar proteins. The present work has been aimed to investigate whether autophagic degradation also plays a role in the onset of muscle depletion in cancer-bearing animals and in glucocorticoid-induced atrophy and sarcopenia of aging. The results show that autophagy is induced in muscle in three different models of cancer cachexia and in glucocorticoid-treated mice. In contrast, autophagic degradation in the muscle of sarcopenic animals is impaired but can be reactivated by calorie restriction. These results further demonstrate that different mechanisms are involved in pathologic muscle wasting and that autophagy, either excessive or defective, contributes to the complicated network that leads to muscle atrophy. In this regard, particularly intriguing is the observation that in cancer hosts and tumor necrosis factor α-treated C2C12 myotubes, insulin can only partially blunt autophagy induction. This finding suggests that autophagy is triggered through mechanisms that cannot be circumvented by using classic upstream modulators, prompting us to identify more effective approaches to target this proteolytic system.


Cancer | 1994

Cholesterol content in tumor tissues is inversely associated with high-density lipoprotein cholesterol in serum in patients with gastrointestinal cancer

Sandra Dessì; Barbara Batetta; D. Pulisci; O. Spano; C. Anchisi; Luciana Tessitore; Paola Costelli; Francesco M. Baccino; E. Aroasio; Paolo Pani

Background. The authors have previously demonstrated in different experimental models that sustained processes of cellular growth are characterized by alterations of cholesterol metabolism not only in the proliferating tissues but also in the plasma compartment.


PLOS ONE | 2010

Muscle Wasting and Impaired Myogenesis in Tumor Bearing Mice Are Prevented by ERK Inhibition

Fabio Penna; Domiziana Costamagna; Alessandro Fanzani; Gabriella Bonelli; Francesco M. Baccino; Paola Costelli

Background The onset of cachexia is a frequent feature in cancer patients. Prominent characteristic of this syndrome is the loss of body and muscle weight, this latter being mainly supported by increased protein breakdown rates. While the signaling pathways dependent on IGF-1 or myostatin were causally involved in muscle atrophy, the role of the Mitogen-Activated-Protein-Kinases is still largely debated. The present study investigated this point on mice bearing the C26 colon adenocarcinoma. Methodology/Principal Findings C26-bearing mice display a marked loss of body weight and muscle mass, this latter associated with increased phosphorylated (p)-ERK. Administration of the ERK inhibitor PD98059 to tumor bearers attenuates muscle depletion and weakness, while restoring normal atrogin-1 expression. In C26 hosts, muscle wasting is also associated with increased Pax7 expression and reduced myogenin levels. Such pattern, suggestive of impaired myogenesis, is reversed by PD98059. Increased p-ERK and reduced myosin heavy chain content can be observed in TNFα-treated C2C12 myotubes, while decreased myogenin and MyoD levels occur in differentiating myoblasts exposed to the cytokine. All these changes are prevented by PD98059. Conclusions/Significance These results demonstrate that ERK is involved in the pathogenesis of muscle wasting in cancer cachexia and could thus be proposed as a therapeutic target.


Current Opinion in Clinical Nutrition and Metabolic Care | 2003

Mechanisms of skeletal muscle depletion in wasting syndromes: role of ATP-ubiquitin-dependent proteolysis.

Paola Costelli; Francesco M. Baccino

Purpose of review Muscle protein wasting frequently complicates patient outcome in several chronic pathologies. The underlying mechanisms remain largely obscure, although studies on experimental models have clarified that a complex interplay of different factors such as nutrient supply, classical hormones, cytokines and other less well defined factors likely concur in causing muscle depletion. The aim of the present review is to highlight some crucial points in the interpretation of the data available about the contribution of the different proteolytic systems, with particular reference to the ubiquitin‐proteasome system, in the onset of muscle protein wasting in disease states. Recent findings Much effort has been directed to understanding the role of different signals, transduction pathways, and proteolytic mechanisms in the acceleration of muscle protein catabolism. Several reports propose that ATP‐ubiquitin‐dependent proteolysis plays a critical role in the enhancement of muscle protein catabolism observed in different pathological states. Other papers, however, suggest that the lysosomal or the calcium‐dependent proteolytic pathways or both may be involved. Finally, the studies have been extended to evaluate the possibility of interfering pharmacologically with the onset of muscle protein hypercatabolism. Summary As the present overview points out, several questions still remain unanswered in the issue of muscle wasting. While many different signals that have the potential to enforce the acceleration of muscle protein breakdown have been identified, it is largely unknown how they are transduced and converge into the hypercatabolic response and how the proteolytic pathways involved are activated. The concept seems to emerge that there may be a coordinated action of different proteolytic pathways in setting up muscle protein turnover towards excess catabolism.


International Journal of Oncology | 2011

β-hydroxy-β-methylbutyrate (HMB) attenuates muscle and body weight loss in experimental cancer cachexia

Zaira Aversa; Andrea Bonetto; Paola Costelli; Valerio Giacomo Minero; Fabio Penna; Francesco M. Baccino; S. Lucia; Filippo Rossi Fanelli; Maurizio Muscaritoli

β-hydroxy-β-methylbutyrate (HMB), a leucine metabolite, improves muscle mass and function. This study aimed at evaluating the effects of HMB administration in an experimental in vivo model of cancer cachexia (CC). Wistar rats were randomized to receive standard or 4% HMB-enriched chow. Rats from both groups were randomized to receive an i.p. inoculum of AH-130 cells (TB). All rats were weighed and sacrificed at day 24. Liver, heart and muscles were dissected and weighed. The protein levels of p-p70S6k, p-eIf2α, p-mTOR and p-4-EB-P1 were evaluated by Western blotting on gastrocnemius muscle (GSN). As expected, the growth of the AH-130 ascites hepatoma induced significant carcass weight and GSN muscle loss. HMB treatment significantly increased GSN and heart weight in controls (p=0.002 and p<0.001, respectively). In HMB-treated TB, body weight was not lost but significantly (p=0.003) increased, and GSN loss was significantly (p=0.04) attenuated with respect to TB. Phosphorylated eIF2α markedly decreased in TB-rats vs. C. Feeding the HMB-enriched diet resulted in decreased p-eIF2α levels in control animals, while no changes could be observed in the TB group. Phosphorylated p70S6K and phosphorylated mTOR were markedly increased by HMB treatment in controls and further increased in TB. Phosphorylated 4-EB-P1 was markedly increased in TB but substantially unaffected by HMB treatment. Administration of HMB attenuates body weight and muscle loss in experimental CC. Increased phosphorylation of key anabolic molecules suggests that these actions are mediated by improved protein anabolism in muscle.

Collaboration


Dive into the Francesco M. Baccino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge