Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Paesani is active.

Publication


Featured researches published by Francesco Paesani.


Journal of the American Chemical Society | 2012

The Water Hexamer: Cage, Prism, or Both. Full Dimensional Quantum Simulations Say Both

Yimin Wang; Volodymyr Babin; Joel M. Bowman; Francesco Paesani

State-of-the-art quantum simulations on a full-dimensional ab initio potential energy surface are used to characterize the properties of the water hexamer. The relative populations of the different isomers are determined over a wide range of temperatures. While the prism isomer is identified as the global minimum-energy structure, the quantum simulations, which explicitly include zero-point energy and quantum thermal motion, predict that both the cage and prism isomers are present at low temperature down to almost 0 K. This is largely consistent with the available experimental data and, in particular, with very recent measurements of broadband rotational spectra of the water hexamer recorded in supersonic expansions.


Chemical Reviews | 2016

Modeling Molecular Interactions in Water: From Pairwise to Many-Body Potential Energy Functions

Gerardo Andrés Cisneros; Kjartan Thor Wikfeldt; Lars Ojamäe; Jibao Lu; Yao Xu; Hedieh Torabifard; Albert P. Bartók; Gábor Csányi; Valeria Molinero; Francesco Paesani

Almost 50 years have passed from the first computer simulations of water, and a large number of molecular models have been proposed since then to elucidate the unique behavior of water across different phases. In this article, we review the recent progress in the development of analytical potential energy functions that aim at correctly representing many-body effects. Starting from the many-body expansion of the interaction energy, specific focus is on different classes of potential energy functions built upon a hierarchy of approximations and on their ability to accurately reproduce reference data obtained from state-of-the-art electronic structure calculations and experimental measurements. We show that most recent potential energy functions, which include explicit short-range representations of two-body and three-body effects along with a physically correct description of many-body effects at all distances, predict the properties of water from the gas to the condensed phase with unprecedented accuracy, thus opening the door to the long-sought “universal model” capable of describing the behavior of water under different conditions and in different environments.


Journal of the American Chemical Society | 2012

Molecular-Level Characterization of the Breathing Behavior of the Jungle-Gym-type DMOF-1 Metal–Organic Framework

Jason S. Grosch; Francesco Paesani

Fundamental insights into the molecular mechanisms that determine the breathing behavior of the jungle-gym-type DMOF-1 metal-organic framework upon adsorption of benzene and isopropyl alcohol are gained from computer simulations. In all cases, good agreement is obtained between the calculated and experimental structural parameters. In the case of benzene adsorption, DMOF-1 is predicted to exist in a narrow pore configuration at high loadings and/or low temperature. A structural transition into a large pore configuration is then observed as the temperature increases and/or the loading decreases, which is directly related to the spatial distribution and molecular interactions of the benzene molecules within the pores. The isopropyl alcohol adsorption simulations indicate that DMOF-1 undergoes two distinct structural transitions (from large pore to narrow pore and then back to large pore) as the number of adsorbed molecules increases, which is explained in terms of the formation of hydrogen bonds between the isopropyl molecules and the framework.


Journal of Physical Chemistry B | 2012

A refined MS-EVB model for proton transport in aqueous environments.

Kyoyeon Park; Wei Lin; Francesco Paesani

In order to improve the description of proton mobility in aqueous environments, a revised multistate empirical valence bond model (aMS-EVB3) is developed. The new aMS-EVB3 model is built upon an anharmonic water force field (aSPC/Fw) in which the OH bond potential is described through a quartic approximation to a Morse potential. First, it is shown that the aSPC/Fw anharmonic water model provides an accurate description of water at ambient conditions and reproduces the available experimental data for several structural, thermodynamic, and dynamical properties. Second, it is shown that, when applied to the study of proton solvation and transport in bulk water, the new aMS-EVB3 model accurately describes the solvation structure around the excess proton. Importantly, the new aMS-EVB3 model predicts a significantly larger proton diffusion coefficient than previous models, which largely improves the agreement with the available experimental data.


Journal of Chemical Theory and Computation | 2012

Application of adaptive QM/MM methods to molecular dynamics simulations of aqueous systems

Kyoyeon Park; Andreas W. Götz; Ross C. Walker; Francesco Paesani

The difference-based adaptive solvation quantum mechanics/molecular mechanics (adQM/MM) method (J. Chem. Theory Comput.2009, 5, 2212) as implemented in the Amber software was applied to the study of several chemical processes in solution. The adQM/MM method is based on an efficient selection scheme that enables quantum-mechanical treatment of the active region of a molecular system in solution taking explicitly into account diffusion of solvent molecules between the QM and the MM regions. Specifically, adQM/MM molecular dynamics simulations are carried out to characterize (1) the free energy profiles of halide exchange SN2 reactions in water, (2) the hydration structure of the Cl(-) ion, and (3) the solvation structure of the zwitterionic form of glycine in water. A comparison is made with the results obtained using standard MM and QM/MM methods as well as with the available fully QM and experimental data. In all cases, it is shown that the adaptive QM/MM simulations provide a physically realistic description of the system of interest.


Journal of Chemical Physics | 2015

On the representation of many-body interactions in water

Gregory R. Medders; Andreas W. Götz; Miguel Morales; Pushp Bajaj; Francesco Paesani

Recent work has shown that the many-body expansion of the interaction energy can be used to develop analytical representations of global potential energy surfaces (PESs) for water. In this study, the role of short- and long-range interactions at different orders is investigated by analyzing water potentials that treat the leading terms of the many-body expansion through implicit (i.e., TTM3-F and TTM4-F PESs) and explicit (i.e., WHBB and MB-pol PESs) representations. It is found that explicit short-range representations of 2-body and 3-body interactions along with a physically correct incorporation of short- and long-range contributions are necessary for an accurate representation of the water interactions from the gas to the condensed phase. Similarly, a complete many-body representation of the dipole moment surface is found to be crucial to reproducing the correct intensities of the infrared spectrum of liquid water.


Journal of the American Chemical Society | 2016

Dissecting the Molecular Structure of the Air/Water Interface from Quantum Simulations of the Sum-Frequency Generation Spectrum

Gregory R. Medders; Francesco Paesani

The molecular characterization of the air/water interface is a key step in understanding fundamental multiphase phenomena ranging from heterogeneous chemical processes in the atmosphere to the hydration of biomolecules. The apparent simplicity of the air/water interface, however, masks an underlying complexity associated with the dynamic nature of the water hydrogen-bond network that has so far hindered an unambiguous characterization of its microscopic properties. Here, we demonstrate that the application of quantum many-body molecular dynamics, which enables spectroscopically accurate simulations of water from the gas to the condensed phase, leads to a definitive molecular-level picture of the interface region. For the first time, excellent agreement is obtained between the simulated vibrational sum-frequency generation spectrum and the most recent state-of-the-art measurements, without requiring any empirical frequency shift or ad hoc scaling of the spectral intensity. A systematic dissection of the spectral features demonstrates that a rigorous representation of nuclear quantum effects as well as of many-body energy and electrostatic contributions is necessary for a quantitative reproduction of the experimental data. The unprecedented accuracy of the simulations presented here indicates that quantum many-body molecular dynamics can enable predictive studies of aqueous interfaces, which by complementing analogous experimental measurements will provide unique molecular insights into multiphase and heterogeneous processes of relevance in chemistry, biology, materials science, and environmental research.


Journal of Materials Chemistry | 2015

MIL-101(Fe) as a lithium-ion battery electrode material: a relaxation and intercalation mechanism during lithium insertion

JaeWook Shin; Min Kim; Jordi Cirera; Shawn Chen; Gregory J. Halder; Thomas A. Yersak; Francesco Paesani; Seth M. Cohen; Ying Shirley Meng

The electrochemical performance of a MIL-101(Fe) metal–organic framework (MOF) as a lithium ion battery electrode is reported for the first time. Iron metal centers can be electrochemically activated. The Fe3+/Fe2+ redox couple is electrochemically active, but not reversible over many cycles. A comparison between ex situ and in operando X-ray absorption spectroscopy (XAS) on the Fe K-edge is presented. Our results indicate that the capacity fade is related to a time dependent, irreversible oxidation of Fe2+ to Fe3+. These results are key in proving the importance of in operando XAS measurements. The MOF side reaction with an electrolyte has been computationally modeled. These results provide further insights on the mechanism responsible for the MOF lack of reversibility. Future guidelines for improving the reversibility of MOFs used as electrodes in Li-ion batteries based on the fine-tuning of the electronic structure of the material are proposed.


Angewandte Chemie | 2016

Proton Transport in a Highly Conductive Porous Zirconium-Based Metal-Organic Framework: Molecular Insight.

Daiane Damasceno Borges; Sabine Devautour-Vinot; Hervé Jobic; Jacques Ollivier; Farid Nouar; Rocio Semino; Thomas Devic; Christian Serre; Francesco Paesani; Guillaume Maurin

The water stable UiO-66(Zr)-(CO2H)2 MOF exhibits a superprotonic conductivity of 2.3×10(-3)  S cm(-1) at 90 °C and 95 % relative humidity. Quasi-elastic neutron scattering measurements combined with aMS-EVB3 molecular dynamics simulations were able to probe individually the dynamics of both confined protons and water molecules and to further reveal that the proton transport is assisted by the formation of a hydrogen-bonded water network that spans from the tetrahedral to the octahedral cages of this MOF. This is the first joint experimental/modeling study that unambiguously elucidates the proton-conduction mechanism at the molecular level in a highly conductive MOF.


Journal of Chemical Physics | 2012

The effects of electronic polarization on water adsorption in metal-organic frameworks: H2O in MIL-53(Cr).

Jordi Cirera; Jeffrey C. Sung; Porter B. Howland; Francesco Paesani

The effects of electronic polarization on the adsorption of water in the MIL-53(Cr) metal-organic framework are investigated using molecular dynamics simulations. For this purpose a fully polarizable force field for MIL-53(Cr) was developed which is compatible with the ab initio-based TTM3-F water model. The analysis of the spatial distributions of the water molecules within the MIL-53(Cr) nanopores calculated as a function of loading indicates that polarization effects play an important role in the formation of hydrogen bonds between the water molecules and the hydroxyl groups of the framework. As a result, large qualitative differences are found between the radial distribution functions calculated with non-polarizable and polarizable force fields. The present analysis suggests that polarization effects can significantly impact molecular adsorption in metal-organic frameworks under hydrated conditions.

Collaboration


Dive into the Francesco Paesani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jordi Cirera

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Lin

University of California

View shared research outputs
Top Co-Authors

Avatar

Pushp Bajaj

University of California

View shared research outputs
Top Co-Authors

Avatar

Kyoyeon Park

University of California

View shared research outputs
Top Co-Authors

Avatar

Marc Riera

University of California

View shared research outputs
Top Co-Authors

Avatar

Rita Prosmiti

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

C. Huy Pham

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge