Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Paonessa is active.

Publication


Featured researches published by Francesco Paonessa.


Nature Communications | 2010

Pseudogene-mediated posttranscriptional silencing of HMGA1 can result in insulin resistance and type 2 diabetes

Eusebio Chiefari; Stefania Iiritano; Francesco Paonessa; Ilaria Le Pera; Biagio Arcidiacono; Mirella Filocamo; Daniela Foti; Stephen A. Liebhaber; Antonio Brunetti

Processed pseudogenes are non-functional copies of normal genes that arise by a process of mRNA retrotransposition. The human genome contains thousands of pseudogenes; however, knowledge regarding their biological role is limited. Previously, we demonstrated that high mobility group A1 (HMGA1) protein regulates the insulin receptor (INSR) gene and that two diabetic patients demonstrated a marked destabilization of HMGA1 mRNA. In this paper we report that this destabilization of HMGA1 mRNA is triggered by enhanced expression of RNA from an HMGA1 pseudogene, HMGA1-p. Targeted knockdown of HMGA1-p mRNA in patient cells results in a reciprocal increase in HMGA1 mRNA stability and expression levels with a parallel correction in cell-surface INSR expression and insulin binding. These data provide evidence for a regulatory role of an expressed pseudogene in humans and establishes a novel mechanistic linkage between pseudogene HMGA1-p expression and type 2 diabetes mellitus.


JAMA | 2011

Functional Variants of the HMGA1 Gene and Type 2 Diabetes Mellitus

Eusebio Chiefari; Sinan Tanyolaç; Francesco Paonessa; Clive R. Pullinger; Carmelo Capula; Stefania Iiritano; Tommaso Mazza; Michele Forlin; Alfredo Fusco; Vincent Durlach; Anne Durlach; Mary J. Malloy; John P. Kane; Steven W. Heiner; Mirella Filocamo; Daniela Foti; Ira D. Goldfine; Antonio Brunetti

CONTEXT High-mobility group A1 (HMGA1) protein is a key regulator of insulin receptor (INSR) gene expression. We previously identified a functional HMGA1 gene variant in 2 insulin-resistant patients with decreased INSR expression and type 2 diabetes mellitus (DM). OBJECTIVE To examine the association of HMGA1 gene variants with type 2 DM. DESIGN, SETTINGS, AND PARTICIPANTS Case-control study that analyzed the HMGA1 gene in patients with type 2 DM and controls from 3 populations of white European ancestry. Italian patients with type 2 DM (n = 3278) and 2 groups of controls (n = 3328) were attending the University of Catanzaro outpatient clinics and other health care sites in Calabria, Italy, during 2003-2009; US patients with type 2 DM (n = 970) were recruited in Northern California clinics between 1994 and 2005 and controls (n = 958) were senior athletes without DM collected in 2004 and 2009; and French patients with type 2 DM (n = 354) and healthy controls (n = 50) were enrolled at the University of Reims in 1992. Genomic DNA was either directly sequenced or analyzed for specific HMGA1 mutations. Messenger RNA and protein expression for HMGA1 and INSR were measured in both peripheral lymphomonocytes and cultured Epstein-Barr virus-transformed lymphoblasts from patients with type 2 DM and controls. MAIN OUTCOME MEASURES The frequency of HMGA1 gene variants among cases and controls. Odds ratios (ORs) for type 2 DM were estimated by logistic regression analysis. RESULTS The most frequent functional HMGA1 variant, IVS5-13insC, was present in 7% to 8% of patients with type 2 DM in all 3 populations. The prevalence of IVS5-13insC variant was higher among patients with type 2 DM than among controls in the Italian population (7.23% vs 0.43% in one control group; OR, 15.77 [95% confidence interval {CI}, 8.57-29.03]; P < .001 and 7.23% vs 3.32% in the other control group; OR, 2.03 [95% CI, 1.51-3.43]; P < .001). In the US population, the prevalence of IVS5-13insC variant was 7.7% among patients with type 2 DM vs 4.7% among controls (OR, 1.64 [95% CI, 1.05-2.57]; P = .03). In the French population, the prevalence of IVS5-13insC variant was 7.6% among patients with type 2 DM and 0% among controls (P = .046). In the Italian population, 3 other functional variants were observed. When all 4 variants were analyzed, HMGA1 defects were present in 9.8% of Italian patients with type 2 DM and 0.6% of controls. In addition to the IVS5 C-insertion, the c.310G>T (p.E104X) variant was found in 14 patients and no controls (Bonferroni-adjusted P = .01); the c.*82G>A variant (rs2780219) was found in 46 patients and 5 controls (Bonferroni-adjusted P < .001); the c.*369del variant was found in 24 patients and no controls (Bonferroni-adjusted P < .001). In circulating monocytes and Epstein-Barr virus-transformed lymphoblasts from patients with type 2 DM and the IVS5-13insC variant, the messenger RNA levels and protein content of both HMGA1 and the INSR were decreased by 40% to 50%, and these defects were corrected by transfection with HMGA1 complementary DNA. CONCLUSIONS Compared with healthy controls, the presence of functional HMGA1 gene variants in individuals of white European ancestry was associated with type 2 DM.


ACS Applied Materials & Interfaces | 2012

Differential cell adhesion on mesoporous silicon substrates

Francesco Gentile; Rosanna La Rocca; Giovanni Marinaro; Annalisa Nicastri; Andrea Toma; Francesco Paonessa; Gheorghe Cojoc; Carlo Liberale; Fabio Benfenati; Enzo Di Fabrizio; Paolo Decuzzi

Porous silicon (PSi) is a promising material in several biomedical applications because of its biocompatibility and biodegradability. Despite the plethora of studies focusing on the interaction of cells with micrometer and submicro geometrical features, limited information is available on the response of cells to substrates with a quasi-regular distribution of nanoscopic pores. Here, the behavior of four different cell types is analyzed on two mesoporous (MeP) silicon substrates, with an average pore size of ∼5 (MeP1) and ∼20 nm (MeP2), respectively. On both MeP substrates, cells are observed to spread and adhere in a larger number as compared to flat silicon wafers. At all considered time points, the surface density of the adhering cells nd is larger on the PSi substrate with the smaller average pore size (MeP1). At 60 h, nd is from ∼1.5 to 5 times larger on MeP1 than on MeP2 substrates, depending on the cell type. The higher rates of proliferation are observed for the two neuronal cell types, the mouse neuroblastoma cells (N2A) and the immortalized human cortical neuronal cells (HCN1A). It is speculated that the higher adhesion on MeP1 could be attributed to a preferential matching of the substrate topography with the recently observed multiscale molecular architecture of focal adhesions. These results have implications in the rational development of PSi substrates for supporting cell adhesion and controlling drug release in implants and scaffolds for tissue engineering applications.


The EMBO Journal | 2013

REST/NRSF-mediated intrinsic homeostasis protects neuronal networks from hyperexcitability

Davide Pozzi; Gabriele Lignani; Enrico Ferrea; Andrea Contestabile; Francesco Paonessa; Rosalba D'Alessandro; Pellegrino Lippiello; Davide Boido; Anna Fassio; Jacopo Meldolesi; Flavia Valtorta; Fabio Benfenati; Pietro Baldelli

Intrinsic homeostasis enables neuronal circuits to maintain activity levels within an appropriate range by modulating neuronal voltage‐gated conductances, but the signalling pathways involved in this process are largely unknown. We characterized the process of intrinsic homeostasis induced by sustained electrical activity in cultured hippocampal neurons based on the activation of the Repressor Element‐1 Silencing Transcription Factor/Neuron‐Restrictive Silencer Factor (REST/NRSF). We showed that 4‐aminopyridine‐induced hyperactivity enhances the expression of REST/NRSF, which in turn, reduces the expression of voltage‐gated Na+ channels, thereby decreasing the neuronal Na+ current density. This mechanism plays an important role in the downregulation of the firing activity at the single‐cell level, re‐establishing a physiological spiking activity in the entire neuronal network. Conversely, interfering with REST/NRSF expression impaired this homeostatic response. Our results identify REST/NRSF as a critical factor linking neuronal activity to the activation of intrinsic homeostasis and restoring a physiological level of activity in the entire neuronal network.


Cancer Research | 2006

Activator Protein-2 Overexpression Accounts for Increased Insulin Receptor Expression in Human Breast Cancer

Francesco Paonessa; Daniela Foti; Vanessa Costa; Eusebio Chiefari; Giuseppe Brunetti; Francesco Leone; Francesco Luciano; Frank Wu; Amy S. Lee; Elio Gulletta; Alfredo Fusco; Antonio Brunetti

Various studies have shown that the insulin receptor (IR) is increased in most human breast cancers, and both ligand-dependent malignant transformation and increased cell growth occur in cultured breast cells overexpressing the IR. However, although numerous in vivo and in vitro observations have indicated an important contributory role for the IR in breast cancer cell biology, the molecular mechanisms accounting for increased IR expression in breast tumors have not previously been elucidated. Herein, we did immunoblot analyses of nuclear protein from cultured breast cancer cells and normal and tumoral tissues from breast cancer patients combined with promoter studies by using a series of human wild-type and mutant IR promoter constructs. We provide evidence that IR overexpression in breast cancer is dependent on the assembly of a transcriptionally active multiprotein-DNA complex, which includes the high-mobility group A1 (HMGA1) protein, the developmentally regulated activator protein-2 (AP-2) transcription factor and the ubiquitously expressed transcription factor Sp1. In cultured breast cancer cells and human breast cancer specimens, the expression of AP-2 was significantly higher than that observed in cells and tissues derived from normal breast, and this overexpression paralleled the increase in IR expression. However, AP-2 DNA-binding activity was undetectable with the IR gene promoter, suggesting that transactivation of this gene by AP-2 might occur indirectly through physical and functional cooperation with HMGA1 and Sp1. Our findings support this hypothesis and suggest that in affected individuals, hyperactivation of the AP-2 gene through the overexpression of IR may play a key role in breast carcinogenesis.


Human Molecular Genetics | 2013

Epileptogenic Q555X SYN1 mutant triggers imbalances in release dynamics and short-term plasticity

Gabriele Lignani; Andrea Raimondi; Enrico Ferrea; Anna Rocchi; Francesco Paonessa; Fabrizia Cesca; Marta Orlando; Tatiana Tkatch; Flavia Valtorta; Patrick Cossette; Pietro Baldelli; Fabio Benfenati

Synapsin I (SynI) is a synaptic vesicle (SV) phosphoprotein playing multiple roles in synaptic transmission and plasticity by differentially affecting crucial steps of SV trafficking in excitatory and inhibitory synapses. SynI knockout (KO) mice are epileptic, and nonsense and missense mutations in the human SYN1 gene have a causal role in idiopathic epilepsy and autism. To get insights into the mechanisms of epileptogenesis linked to SYN1 mutations, we analyzed the effects of the recently identified Q555X mutation on neurotransmitter release dynamics and short-term plasticity (STP) in excitatory and inhibitory synapses. We used patch-clamp electrophysiology coupled to electron microscopy and multi-electrode arrays to dissect synaptic transmission of primary SynI KO hippocampal neurons in which the human wild-type and mutant SynI were expressed by lentiviral transduction. A parallel decrease in the SV readily releasable pool in inhibitory synapses and in the release probability in excitatory synapses caused a marked reduction in the evoked synchronous release. This effect was accompanied by an increase in asynchronous release that was much more intense in excitatory synapses and associated with an increased total charge transfer. Q555X-hSynI induced larger facilitation and post-tetanic potentiation in excitatory synapses and stronger depression after long trains in inhibitory synapses. These changes were associated with higher network excitability and firing/bursting activity. Our data indicate that imbalances in STP and release dynamics of inhibitory and excitatory synapses trigger network hyperexcitability potentially leading to epilepsy/autism manifestations.


Scientific Reports | 2012

HMGA1 is a novel downstream nuclear target of the insulin receptor signaling pathway

Eusebio Chiefari; Maria T. Nevolo; Biagio Arcidiacono; Elisa Maurizio; Aurora Nocera; Stefania Iiritano; Riccardo Sgarra; Katiuscia Possidente; Camillo Palmieri; Francesco Paonessa; Giuseppe Brunetti; Guidalberto Manfioletti; Daniela Foti; Antonio Brunetti

High-mobility group AT-hook 1 (HMGA1) protein is an important nuclear factor that activates gene transcription by binding to AT-rich sequences in the promoter region of DNA. We previously demonstrated that HMGA1 is a key regulator of the insulin receptor (INSR) gene and individuals with defects in HMGA1 have decreased INSR expression and increased susceptibility to type 2 diabetes mellitus. In addition, there is evidence that intracellular regulatory molecules that are employed by the INSR signaling system are involved in post-translational modifications of HMGA1, including protein phosphorylation. It is known that phosphorylation of HMGA1 reduces DNA-binding affinity and transcriptional activation. In the present study, we investigated whether activation of the INSR by insulin affected HMGA1 protein phosphorylation and its regulation of gene transcription. Collectively, our findings indicate that HMGA1 is a novel downstream target of the INSR signaling pathway, thus representing a new critical nuclear mediator of insulin action and function.


BMC Biology | 2009

The cAMP-HMGA1-RBP4 system: a novel biochemical pathway for modulating glucose homeostasis.

Eusebio Chiefari; Francesco Paonessa; Stefania Iiritano; Ilaria Le Pera; Dario Palmieri; Giuseppe Brunetti; Angelo Lupo; Vittorio Colantuoni; Daniela Foti; Elio Gulletta; Giovambattista De Sarro; Alfredo Fusco; Antonio Brunetti

BackgroundWe previously showed that mice lacking the high mobility group A1 gene (Hmga1-knockout mice) developed a type 2-like diabetic phenotype, in which cell-surface insulin receptors were dramatically reduced (below 10% of those in the controls) in the major targets of insulin action, and glucose intolerance was associated with increased peripheral insulin sensitivity. This particular phenotype supports the existence of compensatory mechanisms of insulin resistance that promote glucose uptake and disposal in peripheral tissues by either insulin-dependent or insulin-independent mechanisms. We explored the role of these mechanisms in the regulation of glucose homeostasis by studying the Hmga1-knockout mouse model. Also, the hypothesis that increased insulin sensitivity in Hmga1-deficient mice could be related to the deficit of an insulin resistance factor is discussed.ResultsWe first show that HMGA1 is needed for basal and cAMP-induced retinol-binding protein 4 (RBP4) gene and protein expression in living cells of both human and mouse origin. Then, by employing the Hmga1-knockout mouse model, we provide evidence for the identification of a novel biochemical pathway involving HMGA1 and the RBP4, whose activation by the cAMP-signaling pathway may play an essential role for maintaining glucose metabolism homeostasis in vivo, in certain adverse metabolic conditions in which insulin action is precluded. In comparative studies of normal and mutant mice, glucagon administration caused a considerable upregulation of HMGA1 and RBP4 expression both at the mRNA and protein level in wild-type animals. Conversely, in Hmga1-knockout mice, basal and glucagon-mediated expression of RBP4 was severely attenuated and correlated inversely with increased Glut4 mRNA and protein abundance in skeletal muscle and fat, in which the activation state of the protein kinase Akt, an important downstream mediator of the metabolic effects of insulin on Glut4 translocation and carbohydrate metabolism, was simultaneously increased.ConclusionThese results indicate that HMGA1 is an important modulator of RBP4 gene expression in vivo. Further, they provide evidence for the identification of a novel biochemical pathway involving the cAMP-HMGA1-RBP4 system, whose activation may play a role in glucose homeostasis in both rodents and humans. Elucidating these mechanisms has importance for both fundamental biology and therapeutic implications.


Journal of Biological Chemistry | 2013

Specificity Protein 1 (Sp1)-dependent Activation of the Synapsin I Gene (SYN1) Is Modulated by RE1-silencing Transcription Factor (REST) and 5′-Cytosine-Phosphoguanine (CpG) Methylation

Francesco Paonessa; Shahrzad Latifi; Helena Scarongella; Fabrizia Cesca; Fabio Benfenati

Background: Syn I plays a key role at presynaptic terminals. Results: Sp1 binds to the SYN1 promoter, activating its transcription. Conclusion: Sp1 is a novel regulator of SYN1 transcription, whose activity is inhibited by REST and CpG methylation. Significance: Elucidating the mechanisms underlying basal activation of neuron-specific genes is fundamental to understand brain pathologies, where transcription is often dysregulated. The development and function of the nervous system are directly dependent on a well defined pattern of gene expression. Indeed, perturbation of transcriptional activity or epigenetic modifications of chromatin can dramatically influence neuronal phenotypes. The phosphoprotein synapsin I (Syn I) plays a crucial role during axonogenesis and synaptogenesis as well as in synaptic transmission and plasticity of mature neurons. Abnormalities in SYN1 gene expression have been linked to important neuropsychiatric disorders, such as epilepsy and autism. SYN1 gene transcription is suppressed in non-neural tissues by the RE1-silencing transcription factor (REST); however, the molecular mechanisms that allow the constitutive expression of this genetic region in neurons have not been clarified yet. Herein we demonstrate that a conserved region of human and mouse SYN1 promoters contains cis-sites for the transcriptional activator Sp1 in close proximity to REST binding motifs. Through a series of functional assays, we demonstrate a physical interaction of Sp1 on the SYN1 promoter and show that REST directly inhibits Sp1-mediated transcription, resulting in SYN1 down-regulation. Upon differentiation of neuroblastoma Neuro2a cells, we observe a decrease in endogenous REST and a higher stability of Sp1 on target GC boxes, resulting in an increase of SYN1 transcription. Moreover, methylation of Sp1 cis-sites in the SYN1 promoter region could provide an additional level of transcriptional regulation. Our results introduce Sp1 as a fundamental activator of basal SYN1 gene expression, whose activity is modulated by the neural master regulator REST and CpG methylation.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

Francesco Paonessa; Stefania Criscuolo; Silvio Sacchetti; Davide Amoroso; Helena Scarongella; Federico Pecoraro Bisogni; Emanuele Carminati; Giacomo Pruzzo; Luca Maragliano; Fabrizia Cesca; Fabio Benfenati

Significance Repressor element 1-silencing transcription factor (REST) is a transcriptional repressor that regulates nervous system development. Normally expressed at low levels by mature neurons, REST is up-regulated in various brain pathologies. Using a light-sensitive domain from the oat plant (Avena sativa), we engineered novel optogenetic proteins that inhibit REST activity when illuminated by blue light, thus obtaining the spatial and temporal control of the transcription of REST target genes. This approach may have an impact in the development of new therapies for all the diseases in which REST is dysregulated, such as epilepsy, ischemia, and cancers of various origin, as such therapies may counteract the long-term changes in gene expression that take place in the context of the pathological brain. Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light–oxygen–voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na+-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na+ currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases.

Collaboration


Dive into the Francesco Paonessa's collaboration.

Top Co-Authors

Avatar

Antonio Brunetti

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Alfredo Fusco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Fabio Benfenati

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge