Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Rusconi is active.

Publication


Featured researches published by Francesco Rusconi.


Journal of Neurochemistry | 2014

Phosphorylation of neuronal Lysine‐Specific Demethylase 1LSD1/KDM1A impairs transcriptional repression by regulating interaction with CoREST and histone deacetylases HDAC1/2

Emanuela Toffolo; Francesco Rusconi; Leda Paganini; Marcello Tortorici; Simona Pilotto; Christopher Heise; Chiara Verpelli; Gabriella Tedeschi; Elisa Maffioli; Carlo Sala; Andrea Mattevi; Elena Battaglioli

Epigenetic mechanisms play important roles in brain development, orchestrating proliferation, differentiation, and morphogenesis. Lysine‐Specific Demethylase 1 (LSD1 also known as KDM1A and AOF2) is a histone modifier involved in transcriptional repression, forming a stable core complex with the corepressors corepressor of REST (CoREST) and histone deacetylases (HDAC1/2). Importantly, in the mammalian CNS, neuronal LSD1‐8a, an alternative splicing isoform of LSD1 including the mini‐exon E8a, sets alongside LSD1 and is capable of enhancing neurite growth and morphogenesis. Here, we describe that the morphogenic properties of neuronal LSD1‐8a require switching off repressive activity and this negative modulation is mediated in vivo by phosphorylation of the Thr369b residue coded by exon E8a. Three‐dimensional crystal structure analysis using a phospho‐mimetic mutant (Thr369bAsp), indicate that phosphorylation affects the residues surrounding the exon E8a‐coded amino acids, causing a local conformational change. We suggest that phosphorylation, without affecting demethylase activity, causes in neurons CoREST and HDAC1/2 corepressors detachment from LSD1‐8a and impairs neuronal LSD1‐8a repressive activity. In neurons, Thr369b phosphorylation is required for morphogenic activity, converting neuronal LSD1‐8a in a dominant‐negative isoform, challenging LSD1‐mediated transcriptional repression on target genes.


Aquatic Toxicology | 2011

A proteomic study using zebra mussels (D. polymorpha) exposed to benzo(α)pyrene: the role of gender and exposure concentrations.

Consuelo Riva; Andrea Binelli; Francesco Rusconi; Graziano Colombo; Alessandra Pedriali; Renata Zippel; Alfredo Provini

It has recently been established that the use of proteomics can be a useful tool in the field of ecotoxicology. Despite the fact that the mussel Dreissena polymorpha is a valuable bioindicator for freshwater ecosystems, the application of a proteomic approach with this organism has not been deeply investigated. To this end, several zebra mussel specimens were subjected to a 7-day exposure of two different concentrations (0.1 and 2 μg L⁻¹) of the model pollutant benzo[α]pyrene (B[α]P). Changes in protein expression profiles were investigated in gill cytosolic fractions from control/exposed male and female mussels using 2-DE electrophoresis. B[α]P bioaccumulation in mussel soft tissue was also assessed to validate exposure to the selected chemical. We evaluated overall changes in expression profiles for 28 proteins in exposed mussels, 16 and 12 of which were, respectively, over- and under-expressed. Surprisingly, the comparative analysis of protein data sets showed no proteins that varied commonly between the two different B[α]P concentrations. Spots of interest were manually excised and analysed by MALDI-TOF/TOF mass spectrometry. The most significant proteins that were identified as altered were related to oxidative stress, signal transduction, cellular structure and metabolism. This preliminary study indicates the feasibility of a proteomic approach with the freshwater mussel D. polymorpha and provides a starting point for similar investigations. Our results confirm the need to increase the number of invertebrate proteomic studies in order to increase the following: their representation in databases and the successful identification of their most relevant proteins. Finally, additional studies investigating the role of gender and protein modulation are warranted.


Cerebral Cortex | 2015

LSD1 Neurospecific Alternative Splicing Controls Neuronal Excitability in Mouse Models of Epilepsy

Francesco Rusconi; Leda Paganini; Daniela Braida; Luisa Ponzoni; Emanuela Toffolo; Annalisa Maroli; Nicoletta Landsberger; Francesco Bedogni; Emilia Turco; Linda Pattini; Fiorella Altruda; Silvia De Biasi; Mariaelvina Sala; Elena Battaglioli

Alternative splicing in the brain is dynamic and instrumental to adaptive changes in response to stimuli. Lysine-specific demethylase 1 (LSD1/KDM1A) is a ubiquitously expressed histone H3Lys4 demethylase that acts as a transcriptional co-repressor in complex with its molecular partners CoREST and HDAC1/2. In mammalian brain, alternative splicing of LSD1 mini-exon E8a gives rise to neuroLSD1, a neurospecific isoform that, upon phosphorylation, acts as a dominant-negative causing disassembly of the co-repressor complex and de-repression of target genes. Here we show that the LSD1/neuroLSD1 ratio changes in response to neuronal activation and such effect is mediated by neurospecific splicing factors NOVA1 and nSR100/SRRM4 together with a novel cis-silencer. Indeed, we found that, in response to epileptogenic stimuli, downregulation of NOVA1 reduces exon E8a splicing and expression of neuroLSD1. Using behavioral and EEG analyses we observed that neuroLSD1-specific null mice are hypoexcitable and display decreased seizure susceptibility. Conversely, in a mouse model of Rett syndrome characterized by hyperexcitability, we measured higher levels of NOVA1 protein and upregulation of neuroLSD1. In conclusion, we propose that, in the brain, correct ratio between LSD1 and neuroLSD1 contributes to excitability and, when altered, could represent a pathogenic event associated with neurological disorders involving altered E/I.


Journal of Molecular Neuroscience | 2009

Transcriptomic and Proteomic Analyses of Mouse Cerebellum Reveals Alterations in RasGRF1 Expression Following In Vivo Chronic Treatment with Delta 9-Tetrahydrocannabinol

Graziano Colombo; Francesco Rusconi; Tiziana Rubino; Angela Cattaneo; Enzo Martegani; Daniela Parolaro; Angela Bachi; Renata Zippel

We have applied transcriptomic and proteomic techniques to identify changes in the RNA and the protein levels in the mouse cerebellum after chronic treatment with Δ9-tetrahydrocannabinol (THC). Among approximately 14,000 transcripts in a mouse cDNA microarray library, we found 11 genes with altered expression. RasGRF1, a neuron-specific Ras guanine nucleotide exchange factor, showed a reduction both at the RNA and protein levels with a specific decrease of the protein pool associated to cell membranes. In addition, proteomic analysis on cerebellum obtained from chronically THC-treated mice detected quantitative changes of additional 27 spots, mostly in the membranous fraction. We found enrichment of alpha (Gαo, Gαq) and beta subunits (β4/β2 and β5) of guanine nucleotide-binding proteins and of two calcium-binding proteins, calretinin and hippocalcin-like protein-1. In addition, we also detected a significant increase in the membrane fraction of proteins involved in exo–endocytosis such as septins, dynamin-1, and vesicle protein sorting 29. By western blotting, we confirmed increased membrane localization of calretinin and of dynamin-1 isoforms with higher isoelectric point, indicative for an underphosphorylated state of the molecule. In conclusion, our results indicate that chronic THC modulates the expression and subcellular localization of proteins implicated in Ras signaling, calcium-buffering potential, and trafficking.


Proceedings of the National Academy of Sciences of the United States of America | 2016

LSD1 modulates stress-evoked transcription of immediate early genes and emotional behavior

Francesco Rusconi; Barbara Grillo; Luisa Ponzoni; Silvia Bassani; Emanuela Toffolo; Leda Paganini; Alessandra Mallei; Daniela Braida; Maria Passafaro; Maurizio Popoli; Mariaelvina Sala; Elena Battaglioli

Significance In mammals, different forms of stress, including psychosocial stress, can affect several aspects of health, fostering mood and anxiety disorders in humans. However, a lack of knowledge about the mechanisms underlying the brain physiology of the stress response hinders the development of new therapeutic strategies. We describe the role of the epigenetic enzyme Lysine-Specific Demethylase 1 (LSD1) in the transduction pathway that translates social stress into an altered transcriptional physiology of plasticity genes in hippocampus. In particular, we show that in the brain LSD1 is finely tuned by a mammal-restricted splicing-based mechanism, and its demethylase activity consistently affects anxiety-like behavior in mice. This work addresses a fundamental mechanism, explaining a brain-related phenotype as a result of genome–environment interactions mediated by the epigenome. Behavioral changes in response to stressful stimuli can be controlled via adaptive epigenetic changes in neuronal gene expression. Here we indicate a role for the transcriptional corepressor Lysine-Specific Demethylase 1 (LSD1) and its dominant-negative splicing isoform neuroLSD1, in the modulation of emotional behavior. In mouse hippocampus, we show that LSD1 and neuroLSD1 can interact with transcription factor serum response factor (SRF) and set the chromatin state of SRF-targeted genes early growth response 1 (egr1) and c-fos. Deletion or reduction of neuroLSD1 in mutant mice translates into decreased levels of activating histone marks at egr1 and c-fos promoters, dampening their psychosocial stress-induced transcription and resulting in low anxiety-like behavior. Administration of suberoylanilide hydroxamine to neuroLSD1KO mice reactivates egr1 and c-fos transcription and restores the behavioral phenotype. These findings indicate that LSD1 is a molecular transducer of stressful stimuli as well as a stress-response modifier. Indeed, LSD1 expression itself is increased acutely at both the transcriptional and splicing levels by psychosocial stress, suggesting that LSD1 is involved in the adaptive response to stress.


Cerebral Cortex | 2016

EEF2K/eEF2 pathway controls the excitation/inhibition balance and susceptibility to epileptic seizures

Christopher Heise; Elham Taha; Luca Murru; Luisa Ponzoni; Angela Cattaneo; Fabrizia C. Guarnieri; Caterina Montani; Adele Mossa; Elena Vezzoli; Giulio Ippolito; Jonathan Zapata; Iliana Barrera; Alexey G. Ryazanov; James M. Cook; Michael M. Poe; Michael Rajesh Stephen; Maksym V. Kopanitsa; Roberta Benfante; Francesco Rusconi; Daniela Braida; Maura Francolini; Christopher G. Proud; Flavia Valtorta; Maria Passafaro; Mariaelvina Sala; Angela Bachi; Chiara Verpelli; Kobi Rosenblum; Carlo Sala

Abstract Alterations in the balance of inhibitory and excitatory synaptic transmission have been implicated in the pathogenesis of neurological disorders such as epilepsy. Eukaryotic elongation factor 2 kinase (eEF2K) is a highly regulated, ubiquitous kinase involved in the control of protein translation. Here, we show that eEF2K activity negatively regulates GABAergic synaptic transmission. Indeed, loss of eEF2K increases GABAergic synaptic transmission by upregulating the presynaptic protein Synapsin 2b and &agr;5‐containing GABAA receptors and thus interferes with the excitation/inhibition balance. This cellular phenotype is accompanied by an increased resistance to epilepsy and an impairment of only a specific hippocampal‐dependent fear conditioning. From a clinical perspective, our results identify eEF2K as a potential novel target for antiepileptic drugs, since pharmacological and genetic inhibition of eEF2K can revert the epileptic phenotype in a mouse model of human epilepsy.


Neurobiology of Disease | 2010

Proteome profile in Myotonic Dystrophy type 2 myotubes reveals dysfunction in protein processing and mitochondrial pathways.

Francesco Rusconi; Enzo Mancinelli; Graziano Colombo; Rosanna Cardani; Luca Da Riva; Italia Bongarzone; Giovanni Meola; Renata Zippel

Myotonic Dystrophy type 2 (DM2) is caused by a DNA microsatellite expansion within the Zinc Finger Protein 9 gene leading to an abnormal splicing pattern largely responsible for the pathological condition. To better define the functional changes occurring in human DM2 myotubes we performed a quantitative proteome comparison between myotubes of DM2 and control patients using two-dimensional gel electrophoresis followed by mass spectrometry. Our results indicate that the proteins, altered in DM2 cultures, belong to two major functional categories: i) mitochondrial components, with a reduction of EFTu, HSP60, GRP75 and Dienoyl-CoA-Isomerase, an enzyme involved in fatty acids degradation; ii) the ubiquitin proteasome system with increase of the 26S proteasome regulatory subunit 13 and a reduction of Proteasome subunit Alfa6 and of Rad23B homolog. Altered ubiquitin-proteasomal activity is supported by a global reduction of cytosolic ubiquitinated proteins. Although future work is required to clarify how these changes affect the degradation machinery and mitochondrial function and to evaluate if these changes also occur in the biopsies of DM2 patients, these results identify the mitochondrial proteins and the ubiquitin-proteasomal system as candidates potentially relevant to DM2 pathogenesis.


Human Genetics | 2017

Identification of an atypical microdeletion generating the RNF135-SUZ12 chimeric gene and causing a position effect in an NF1 patient with overgrowth

Luca Ferrari; Giulietta Scuvera; Arianna Tucci; Donatella Bianchessi; Francesco Rusconi; Francesca Menni; Elena Battaglioli; Donatella Milani; Paola Riva

Neurofibromatosis type I (NF1) microdeletion syndrome, which is present in 4–11% of NF1 patients, is associated with a severe phenotype as it is caused by the deletion of NF1 and other genes in the 17q11.2 region. The variable expressivity of the disease makes it challenging to establish genotype–phenotype correlations, which also affects prognosis and counselling. We here describe a 3-year-old NF1 patient with an atypical deletion and a complex phenotype. The patient showed overgrowth, café au lait spots, inguinal freckling, and neurological abnormalities. The extent of the deletion was determined by means of array comparative genomic hybridisation, and its breakpoints were isolated by means of long-range polymerase chain reaction. Sequence analysis of the deletion junction fragment revealed the occurrence of an Alu-mediated recombination that led to the generation of a chimeric gene consisting of three exons of RNF135 and eleven exons of SUZ12. Interestingly, the deletion shares a common RNF135-centred region with another deletion described in a non-NF1 patient with overgrowth. In comparison with the normal RNF135 allele, the chimeric transcript was 350-fold over-expressed in peripheral blood, and the ADAP2 gene located upstream of RNF135 was also up-regulated. In line with this, the deletion causes the loss of a chromatin TD boundary, which entails the aberrant adoption of distal cis-acting regulatory elements. These findings suggest that RNF135 haploinsufficiency is related to overgrowth in patients with NF1 microdeletion syndrome and, for the first time, strongly indicate a position effect that warrants further genotype–phenotype correlation studies to investigate the possible existence of previously unknown pathogenic mechanisms.


International Journal of Molecular Sciences | 2018

Multiple Layers of CDK5R1 Regulation in Alzheimer’s Disease Implicate Long Non-Coding RNAs

Marco Spreafico; Barbara Grillo; Francesco Rusconi; Elena Battaglioli; Marco Venturin

Cyclin-dependent kinase 5 regulatory subunit 1 (CDK5R1) gene encodes for p35, the main activator of Cyclin-dependent kinase 5 (CDK5). The active p35/CDK5 complex is involved in numerous aspects of brain development and function, and its deregulation is closely associated to Alzheimer’s disease (AD) onset and progression. We recently showed that miR-15/107 family can negatively regulate CDK5R1 expression modifying mRNA stability. Interestingly, miRNAs belonging to miR-15/107 family are downregulated in AD brain while CDK5R1 is upregulated. Long non-coding RNAs (lncRNAs) are emerging as master regulators of gene expression, including miRNAs, and their dysregulation has been implicated in the pathogenesis of AD. Here, we evaluated the existence of an additional layer of CDK5R1 expression regulation provided by lncRNAs. In particular, we focused on three lncRNAs potentially regulating CDK5R1 expression levels, based on existing data: NEAT1, HOTAIR, and MALAT1. We demonstrated that NEAT1 and HOTAIR negatively regulate CDK5R1 mRNA levels, while MALAT1 has a positive effect. We also showed that all three lncRNAs positively control miR-15/107 family of miRNAs. Moreover, we evaluated the expression of NEAT1, HOTAIR, and MALAT1 in AD and control brain tissues. Interestingly, NEAT1 displayed increased expression levels in temporal cortex and hippocampus of AD patients. Interestingly, we observed a strong positive correlation between CDK5R1 and NEAT1 expression levels in brain tissues, suggesting a possible neuroprotective role of NEAT1 in AD to compensate for increased CDK5R1 levels. Overall, our work provides evidence of another level of CDK5R1 expression regulation mediated by lncRNAs and points to NEAT1 as a biomarker, as well as a potential pharmacological target for AD therapy.


Frontiers in Molecular Neuroscience | 2018

Acute Stress-Induced Epigenetic Modulations and Their Potential Protective Role Toward Depression

Francesco Rusconi; Elena Battaglioli

Psychiatric disorders entail maladaptive processes impairing individuals’ ability to appropriately interface with environment. Among them, depression is characterized by diverse debilitating symptoms including hopelessness and anhedonia, dramatically impacting the propensity to live a social and active life and seriously affecting working capability. Relevantly, besides genetic predisposition, foremost risk factors are stress-related, such as experiencing chronic psychosocial stress—including bullying, mobbing and abuse—, and undergoing economic crisis or chronic illnesses. In the last few years the field of epigenetics promised to understand core mechanisms of gene-environment crosstalk, contributing to get into pathogenic processes of many disorders highly influenced by stressful life conditions. However, still very little is known about mechanisms that tune gene expression to adapt to the external milieu. In this Perspective article, we discuss a set of protective, functionally convergent epigenetic processes induced by acute stress in the rodent hippocampus and devoted to the negative modulation of stress-induced immediate early genes (IEGs) transcription, hindering stress-driven morphostructural modifications of corticolimbic circuitry. We also suggest that chronic stress damaging protective epigenetic mechanisms, could bias the functional trajectory of stress-induced neuronal morphostructural modification from adaptive to maladaptive, contributing to the onset of depression in vulnerable individuals. A better understanding of the epigenetic response to stress will be pivotal to new avenues of therapeutic intervention to treat depression, especially in light of limited efficacy of available antidepressant drugs.

Collaboration


Dive into the Francesco Rusconi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge