Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Saverio Di Leva is active.

Publication


Featured researches published by Francesco Saverio Di Leva.


Nucleic Acids Research | 2014

Mechanistic insight into ligand binding to G-quadruplex DNA

Francesco Saverio Di Leva; Ettore Novellino; Andrea Cavalli; Michele Parrinello; Vittorio Limongelli

Specific guanine-rich regions in human genome can form higher-order DNA structures called G-quadruplexes, which regulate many relevant biological processes. For instance, the formation of G-quadruplex at telomeres can alter cellular functions, inducing apoptosis. Thus, developing small molecules that are able to bind and stabilize the telomeric G-quadruplexes represents an attractive strategy for antitumor therapy. An example is 3-(benzo[d]thiazol-2-yl)-7-hydroxy-8-((4-(2-hydroxyethyl)piperazin-1-yl)methyl)-2H-chromen-2-one (compound 1), recently identified as potent ligand of the G-quadruplex [d(TGGGGT)]4 with promising in vitro antitumor activity. The experimental observations are suggestive of a complex binding mechanism that, despite efforts, has defied full characterization. Here, we provide through metadynamics simulations a comprehensive understanding of the binding mechanism of 1 to the G-quadruplex [d(TGGGGT)]4. In our calculations, the ligand explores all the available binding sites on the DNA structure and the free-energy landscape of the whole binding process is computed. We have thus disclosed a peculiar hopping binding mechanism whereas 1 is able to bind both to the groove and to the 3’ end of the G-quadruplex. Our results fully explain the available experimental data, rendering our approach of great value for further ligand/DNA studies.


Journal of Medicinal Chemistry | 2014

Design, Synthesis, and Biological Evaluation of Potent Dual Agonists of Nuclear and Membrane Bile Acid Receptors

Francesco Saverio Di Leva; Valentina Sepe; Barbara Renga; Chiara Del Gaudio; Angela Zampella; Stefano Fiorucci; Vittorio Limongelli

Bile acids exert genomic and nongenomic effects by interacting with membrane G-protein-coupled receptors, including the bile acid receptor GP-BAR1, and nuclear receptors, such as the farnesoid X receptor (FXR). These receptors regulate overlapping metabolic functions; thus, GP-BAR1/FXR dual agonists, by enhancing the biological response, represent an innovative strategy for the treatment of enteroendocrine disorders. Here, we report the design, total synthesis, and in vitro/in vivo pharmacological evaluation of a new generation of dual bile acid receptor agonists, with the most potent compound, 19, showing promising pharmacological profiles. We show that compound 19 activates GP-BAR1, FXR, and FXR regulated genes in the liver, increases the intracellular concentration of cAMP, and stimulates the release of the potent insulinotropic hormone GLP-1, resulting in a promising drug candidate for the treatment of metabolic disorders. We also elucidate the binding mode of the most potent dual agonists in the two receptors through a series of computations providing the molecular basis for dual GP-BAR1/FXR agonism.


Journal of Chemical Information and Modeling | 2012

Protein Flexibility in Virtual Screening: The BACE-1 Case Study

Sandro Cosconati; Luciana Marinelli; Francesco Saverio Di Leva; Valeria La Pietra; Angela De Simone; Francesca Mancini; Vincenza Andrisano; Ettore Novellino; David S. Goodsell; Arthur J. Olson

Simulating protein flexibility is a major issue in the docking-based drug-design process for which a single methodological solution does not exist. In our search of new anti-Alzheimer ligands, we were faced with the challenge of including receptor plasticity in a virtual screening campaign aimed at finding new β-secretase inhibitors. To this aim, we incorporated protein flexibility in our simulations by using an ensemble of static X-ray enzyme structures to screen the National Cancer Institute database. A unified description of the protein motion was also generated by computing and combining a set of grid maps using an energy weighting scheme. Such a description was used in an energy-weighted virtual screening experiment on the same molecular database. Assessment of the enrichment factors from these two virtual screening approaches demonstrated comparable predictive powers, with the energy-weighted method being faster than the ensemble method. The in vitro evaluation demonstrated that out of the 32 tested ligands, 17 featured the predicted enzyme inhibiting property. Such an impressive success rate (53.1%) demonstrates the enhanced power of the two methodologies and suggests that energy-weighted virtual screening is a more than valid alternative to ensemble virtual screening given its reduced computational demands and comparable performance.


Antimicrobial Agents and Chemotherapy | 2014

Identification of Highly Conserved Residues Involved in Inhibition of HIV-1 RNase H Function by Diketo Acid Derivatives

Angela Corona; Francesco Saverio Di Leva; Sylvain Thierry; Luca Pescatori; Giuliana Cuzzucoli Crucitti; Frédéric Subra; Olivier Delelis; Francesca Esposito; Giuseppe Rigogliuso; Roberta Costi; Sandro Cosconati; Ettore Novellino; Roberto Di Santo; Enzo Tramontano

ABSTRACT HIV-1 reverse transcriptase (RT)-associated RNase H activity is an essential function in viral genome retrotranscription. RNase H is a promising drug target for which no inhibitor is available for therapy. Diketo acid (DKA) derivatives are active site Mg2+-binding inhibitors of both HIV-1 RNase H and integrase (IN) activities. To investigate the DKA binding site of RNase H and the mechanism of action, six couples of ester and acid DKAs, derived from 6-[1-(4-fluorophenyl)methyl-1H-pyrrol-2-yl)]-2,4-dioxo-5-hexenoic acid ethyl ester (RDS1643), were synthesized and tested on both RNase H and IN functions. Most of the ester derivatives showed selectivity for HIV-1 RNase H versus IN, while acids inhibited both functions. Molecular modeling and site-directed mutagenesis studies on the RNase H domain demonstrated different binding poses for ester and acid DKAs and proved that DKAs interact with residues (R448, N474, Q475, Y501, and R557) involved not in the catalytic motif but in highly conserved portions of the RNase H primer grip motif. The ester derivative RDS1759 selectively inhibited RNase H activity and viral replication in the low micromolar range, making contacts with residues Q475, N474, and Y501. Quantitative PCR studies and fluorescence-activated cell sorting (FACS) analyses showed that RDS1759 selectively inhibited reverse transcription in cell-based assays. Overall, we provide the first demonstration that RNase H inhibition by DKAs is due not only to their chelating properties but also to specific interactions with highly conserved amino acid residues in the RNase H domain, leading to effective targeting of HIV retrotranscription in cells and hence offering important insights for the rational design of RNase H inhibitors.


Journal of Medicinal Chemistry | 2013

Binding Mechanism of the Farnesoid X Receptor Marine Antagonist Suvanine Reveals a Strategy To Forestall Drug Modulation on Nuclear Receptors. Design, Synthesis, and Biological Evaluation of Novel Ligands

Francesco Saverio Di Leva; Carmen Festa; Claudio D’Amore; Simona De Marino; Barbara Renga; Maria Valeria D’Auria; Ettore Novellino; Vittorio Limongelli; Angela Zampella; Stefano Fiorucci

Here, we report suvanine, a marine sponge sesterterpene, as an antagonist of the mammalian bile acid sensor farnesoid-X-receptor (FXR). Using suvanine as a template, we shed light on the molecular bases of FXR antagonism, identifying the essential conformational changes responsible for the transition from the agonist to the antagonist form. Molecular characterization of the nuclear corepressor NCoR and coactivator Src-1 revealed that receptor conformational changes are associated with a specific dynamic of recruitment of these cofactors to the promoter of OSTα, a FXR regulated gene. Using suvanine as a novel hit, a library of semisynthetic derivatives has been designed and prepared, leading to pharmacological profiles ranging from agonism to antagonism toward FXR. Deep pharmacological evaluation demonstrated that derivative 19 represents a new chemotype of FXR modulator, whereas alcohol 6, with a simplified molecular scaffold, exhibits excellent antagonistic activity.


Journal of Medicinal Chemistry | 2013

Exploring the Chemical Space of G‑Quadruplex Binders: Discovery of a Novel Chemotype Targeting the Human Telomeric Sequence

Francesco Saverio Di Leva; Pasquale Zizza; Chiara Cingolani; Carmen D'Angelo; Bruno Pagano; Jussara Amato; Erica Salvati; Claudia Sissi; Odra Pinato; Luciana Marinelli; Andrea Cavalli; Sandro Cosconati; Ettore Novellino; Antonio Randazzo; Annamaria Biroccio

Recent findings have unambiguously demonstrated that DNA G-rich sequences can adopt a G-quadruplex folding in living cells, thus further validating them as crucial targets for anticancer therapy. Herein, to identify new potent G4 binders as antitumor drug candidates, we have targeted a 24-nt G4-forming telomeric sequence employing a receptor-based virtual screening approach. Among the best candidates, in vitro binding experiments allowed identification of three novel G4 ligands. Among them, the best compound features an unprecedented binding selectivity for the human telomeric DNA G-quadruplex with no detectable binding for other G4-forming sequences present at different genomic sites. This behavior correlates with the detected ability to generate DNA damage response in tumor cells at the telomeric level and efficient antiproliferative effect on different tumor cell lines at low micromolar concentrations.


Journal of Medicinal Chemistry | 2014

Rational improvement of the affinity and selectivity of integrin binding of grafted lasso peptides.

Julian D. Hegemann; Mariarosaria De Simone; Marcel Zimmermann; Thomas A. Knappe; Xiulan Xie; Francesco Saverio Di Leva; Luciana Marinelli; Ettore Novellino; Stefan Zahler; Horst Kessler; Mohamed A. Marahiel

Integrins moderate diverse important functions in the human body and are promising targets in cancer therapy. Hence, the selective inhibition of specific integrins is of great medicinal interest. Here, we report the optimization of a grafted lasso peptide, yielding MccJ25(RGDF), which is a highly potent and selective αvβ3 integrin inhibitor. Furthermore, its NMR structure was elucidated and employed in a molecular dynamics approach, revealing information about the integrin binding mode and selectivity profile of MccJ25(RGDF).


Current Pharmaceutical Design | 2012

State-of-the-art methodologies for the discovery and characterization of DNA G-quadruplex binders.

Bruno Pagano; Sandro Cosconati; Valérie Gabelica; Luigi Petraccone; Stefano De Tito; Luciana Marinelli; Valeria La Pietra; Francesco Saverio Di Leva; Ilaria Lauri; Roberta Trotta; Ettore Novellino; Concetta Giancola; Antonio Randazzo

Nowadays, the molecular basis of interaction between low molecular weight compounds and biological macromolecules is the subject of numerous investigations aimed at the rational design of molecules with specific therapeutic applications. In the last decades, it has been demonstrated that DNA quadruplexes play a critical role in several biological processes both at telomeric and gene promoting levels thus providing a great stride in the discovery of ligands able to interact with such a biologically relevant DNA conformation. So far, a number of experimental and computational approaches have been successfully employed in order to identify new ligands and to characterize their binding to the DNA. The main focus of this review is the description of these methodologies, placing a particular emphasis on computational methods, isothermal titration calorimetry (ITC), mass spectrometry (MS), nuclear magnetic resonance (NMR), circular dichroism (CD) and fluorescence spectroscopies.


Journal of Medicinal Chemistry | 2014

Modification on Ursodeoxycholic Acid (UDCA) Scaffold. Discovery of Bile Acid Derivatives As Selective Agonists of Cell-Surface G-Protein Coupled Bile Acid Receptor 1 (GP-BAR1)

Valentina Sepe; Barbara Renga; Carmen Festa; Claudio D’Amore; Dario Masullo; Sabrina Cipriani; Francesco Saverio Di Leva; Maria Chiara Monti; Ettore Novellino; Vittorio Limongelli; Angela Zampella; Stefano Fiorucci

Bile acids are signaling molecules interacting with the nuclear receptor FXR and the G-protein coupled receptor 1 (GP-BAR1/TGR5). GP-BAR1 is a promising pharmacological target for the treatment of steatohepatitis, type 2 diabetes, and obesity. Endogenous bile acids and currently available semisynthetic bile acids are poorly selective toward GP-BAR1 and FXR. Thus, in the present study we have investigated around the structure of UDCA, a clinically used bile acid devoid of FXR agonist activity, to develop a large family of side chain modified 3α,7β-dihydroxyl cholanoids that selectively activate GP-BAR1. In vivo and in vitro pharmacological evaluation demonstrated that administration of compound 16 selectively increases the expression of pro-glucagon 1, a GP-BAR1 target, in the small intestine, while it had no effect on FXR target genes in the liver. Further, compound 16 results in a significant reshaping of bile acid pool in a rodent model of cholestasis. These data demonstrate that UDCA is a useful scaffold to generate novel and selective steroidal ligands for GP-BAR1.


Journal of Medicinal Chemistry | 2014

Pharmacophoric Modifications Lead to Superpotent αvβ3 Integrin Ligands with Suppressed α5β1 Activity

Stefanie Neubauer; Florian Rechenmacher; Richard Brimioulle; Francesco Saverio Di Leva; Alexander Bochen; Tariq R. Sobahi; Margret Schottelius; Ettore Novellino; Carlos Mas‐Moruno; Luciana Marinelli; Horst Kessler

The selective targeting of the αvβ3 integrin subtype without affecting the structurally closely related receptor α5β1 is crucial for understanding the details of their biological and pathological functions and thus of great relevance for diagnostic and therapeutic approaches in cancer treatment. Here, we present the synthesis of highly active RGD peptidomimetics for the αvβ3 integrin with remarkable selectivity against α5β1. Incorporation of a methoxypyridine building block into a ligand scaffold and variation of different functional moieties led to αvβ3-antagonistic activities in the low nanomolar or even subnanomolar range. Furthermore, docking studies were performed to give insights into the binding modes of the novel compounds. The presented library comprises powerful ligands for specific addressing and blocking of the αvβ3 integrin subtype, thereby representing privileged tools for integrin-based personalized medicine.

Collaboration


Dive into the Francesco Saverio Di Leva's collaboration.

Top Co-Authors

Avatar

Ettore Novellino

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Luciana Marinelli

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Sandro Cosconati

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Vittorio Limongelli

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Salvatore Di Maro

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Zampella

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Diego Brancaccio

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Stefano Tomassi

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Valentina Sepe

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge