Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Sisini is active.

Publication


Featured researches published by Francesco Sisini.


BMC Neurology | 2013

An ultrasound model to calculate the brain blood outflow through collateral vessels: a pilot study

Paolo Zamboni; Francesco Sisini; Erica Menegatti; Angelo Taibi; Anna Maria Malagoni; Sandra Morovic; Mauro Gambaccini

BackgroundThe quantification of the flow returning from the head through the cervical veins and the collaterals of the internal jugular vein (IJV), is becoming of prominent interest in clinical practice. We developed a novel model to calculate the cerebral venous return, normalized to the arterial inflow, in the different segments of the IJV.MethodsWe assessed, by established Echo Colour Doppler (ECD) methodology, the head inflow (HBinF) defined as the sum of common carotids and vertebral arteries, as well as the cerebral flow (CBF) defined as the sum of internal carotid and vertebral arteries. We also assessed the head outflow (HBoutF) defined as the sum of the measurements at the junction of the IJV and the vertebral veins. In addition, we also calculated the collateral flow index (CFI) by estimating the flow which re-enters directly into the superior vena cava as the amount of blood extrapolated by the difference between the HBinF and the HBoutF. We preliminarily tested the model by comparing ten healthy controls (HC) with ten patients affected by chronic cerebral spinal venous insufficiency (CCSVI), a condition characterized by some blockages in the IJV which are bypassed by collateral circulation.ResultsIn HC the HBinF was 956+-105ml/min, whereas the HBoutF was > 90% of the HBinF, leading to a final CFI value of 1%. The last result shows that a very small amount of blood is drained by the collaterals. In upright we confirmed a reduction of the outflow through the IJV which increased CFI to 9%. When we applied the model to CCSVI, the HBinF was not significantly different from controls. In supine, the flow of CCSVI patients in the IJV junction was significantly lower (p < 0.001) while the correspondent CFI value significantly increased (61%, p < 0.0002).ConclusionsOur preliminary application of the novel model in the clinical setting suggests the pivotal role of the collateral network in draining the blood into the superior vena cava under CCSVI condition.


American Journal of Physiology-heart and Circulatory Physiology | 2015

A new hemodynamic model for the study of cerebral venous outflow

Giacomo Gadda; Angelo Taibi; Francesco Sisini; Mauro Gambaccini; Paolo Zamboni; Mauro Ursino

We developed a mathematical model of the cerebral venous outflow for the simulation of the average blood flows and pressures in the main drainage vessels of the brain. The main features of the model are that it includes a validated model for the simulation of the intracranial circulation and it accounts for the dependence of the hydraulic properties of the jugular veins with respect to the gravity field, which makes it an useful tool for the study of the correlations between extracranial blood redistributions and changes in the intracranial environment. The model is able to simulate the average pressures and flows in different points of the jugular ducts, taking into account the amount of blood coming from the anastomotic connections; simulate how the blood redistribution due to change of posture affects flows and pressures in specific points of the system; and simulate redistributions due to stenotic patterns. Sensitivity analysis to check the robustness of the model was performed. The model reproduces average physiologic behavior of the jugular, vertebral, and cerebral ducts in terms of pressures and flows. In fact, jugular flow drops from ∼11.7 to ∼1.4 ml/s in the passage from supine to standing. At the same time, vertebral flow increases from 0.8 to 3.4 ml/s, while cerebral blood flow, venous sinuses pressure, and intracranial pressure are constant around the average value of 12.5 ml/s, 6 mmHg, and 10 mmHg, respectively. All these values are in agreement with literature data.


Radiation Protection Dosimetry | 2010

Simulation of 3D objects into breast tomosynthesis images.

Eman Shaheen; Federica Zanca; Francesco Sisini; Guozhi Zhang; J Jacobs; Hilde Bosmans

Digital breast tomosynthesis is a new three-dimensional (3D) breast-imaging modality that produces images of cross-sectional planes parallel to the detector plane from a limited number of X-ray projections over a limited angular range. Several technical and clinical parameters have not yet been completely optimised. Some of the open questions could be addressed experimentally; other parameter settings cannot be easily realised in practice and the associated optimisation process requires therefore a theoretical approach. Rather than simulating the complete 3D imaging chain, it is hypothesised that the simulation of small lesions into clinical (or test object) images can be of help in the optimisation process. In the present study, small 3D objects have been simulated into real projection images. Subsequently, these hybrid projection images are reconstructed using the routine clinical reconstruction tools. In this study, the validation of this simulation framework is reported through the comparison between simulated and real objects in reconstructed planes. The results confirm that there is no statistically significant difference between the simulated and the real objects. This suggests that other small mathematical or physiological objects could be simulated with the same approach.


Ultrasound in Medicine and Biology | 2015

AN ULTRASONOGRAPHIC TECHNIQUE TO ASSESS THE JUGULAR VENOUS PULSE: A PROOF OF CONCEPT

Francesco Sisini; Mirko Tessari; Giacomo Gadda; Giovanni Di Domenico; Angelo Taibi; Erica Menegatti; Mauro Gambaccini; Paolo Zamboni

The purpose of the work described here was to investigate the feasibility of assessing the jugular venous pulse (JVP) using ultrasound (US) equipment. Three young healthy subjects underwent a B-mode US scan of the internal jugular vein (IJV) to acquire a sonogram sequence in the transverse plane. On each acquired sonogram, the IJV contour was manually traced, and both the cross-sectional area (CSA) and the perimeter were measured. The CSA data set represents the US jugular diagram (USJD). The arterial distension waveform of the subjects was compared with its USJD. The correlation between the CSA and the perimeter was assessed during the cardiac cycle to verify IJV distension. For each subject, a short sonogram sequence of a few seconds was recorded, and the USJD obtained exhibited periodic behavior. Furthermore, for all subjects, the CSA was found to be correlated with the perimeter (Pearson coefficient, R > 0.9), indicating that the IJV in supine position is distended. We compared 390 manually traced contours of the IJV cross-sectional area with corresponding values semi-automatically calculated by an algorithm developed in-house. For all subjects, the sensitivity, specificity and accuracy were around 95%, 85% and 90% respectively. We found that a diagram reflecting the JVP can be obtained by analyzing a B-mode sonogram sequence of the IJV; such a diagram can result in a new methodology to assess the IJV functionality.


American Journal of Neuroradiology | 2014

Reproducibility of cerebrospinal venous blood flow and vessel anatomy with the use of phase contrast-vastly undersampled isotropic projection reconstruction and contrast-enhanced MRA.

Francesco Sisini; Angelo Taibi; Mauro Gambaccini; Erica Menegatti; Paolo Zamboni

BACKGROUND AND PURPOSE: The chronic cerebrospinal venous insufficiency hypothesis raises interest in cerebrospinal venous blood flow imaging, which is more complex and less established than in arteries. For accurate assessment of venous flow in chronic cerebrospinal venous insufficiency diagnosis and research, we must account for physiologic changes in flow patterns. This study examines day-to-day flow variability in cerebrospinal veins by use of 4D MR flow and contrast-enhanced MRA under typical, uncontrolled conditions in healthy individuals. MATERIALS AND METHODS: Ten healthy volunteers were scanned in a test-retest fashion by use of a 4D flow MR imaging technique and contrast-enhanced MRA. Flow parameters obtained from phase contrast-vastly undersampled isotropic projection reconstruction and contrast-enhanced MRA scoring measurements in the head, neck, and chest veins were analyzed for internal consistency and interscan reproducibility. RESULTS: Internal consistency was satisfied at the torcular herophili, with an input-output difference of 2.2%. Percentages of variations in flow were 20.3%, internal jugular vein; 20.4%, azygos vein; 6.8%, transverse sinus; and 5.1%, common carotid artery. Retrograde flow was found in the lower internal jugular vein (4.8%) and azygos vein (7.2%). Contrast-enhanced MRA interscan κ values for the internal jugular vein (left: 0.474, right: 0.366) and azygos vein (−0.053) showed poor interscan agreement. CONCLUSIONS: Phase contrast–vastly undersampled isotropic projection reconstruction blood flow measurements are reliable and highly reproducible in intracranial veins and in the common carotid artery but not in veins of the neck (internal jugular vein) and chest (azygos vein) because of normal physiologic variation. Retrograde flow normally may be observed in the lower internal jugular vein and azygos vein. Low interrater agreement in contrast-enhanced MRA scans was observed. These findings have important implications for imaging diagnosis and experimental research of chronic cerebrospinal venous insufficiency.


Current Neurovascular Research | 2014

Human internal jugular valve M-mode ultrasound characterization.

Erica Menegatti; Mirko Tessari; Sergio Gianesini; Maria Elena Vannini; Francesco Sisini; Paolo Zamboni

In humans the mechanism governing the internal jugular vein (IJV) valve opening and closure is still unclear. M-mode is used in echo-cardiology for the heart valves assessment. Sometimes it was performed also in deep peripheral veins and in vena cava assessment, but never in the IJV valve. Aim of the present study is to investigate the IJV valves physiology in healthy volunteers, by means of both B and M-mode ultrasound. Eighty-three (83) healthy volunteers (35 Male, 48 Female, 25.7±6.7 y.o.), for a total of 166 IJVs, were enrolled. The entire cohort underwent IJVs high-resolution B and M-mode evaluation, in standardized postural and respiratory conditions. Presence, motility, and number of cusps, as well as their opening and closure mechanism have been assessed. Bilateral valve absence occurred in 13/83 (16%), whereas at least a one side absence was recorded in 38/83 (46‰ of the cohort) (p<0.0356). Valve leaflets were always mobile and respectively bi-cusps in 34%, or mono-cusp in 27%. The latter was significantly more frequent on the left side (35%) than on the right side (19%) (p<0.0013). In supine, M-mode valve opening was synchronous with the cardiac cycle. To the contrary, in an upright position, the valve remained always open and saddled to the wall, independently from the cardiac cycle. In healthy subjects, the IJV valve leaflets are always mobile, but the significant rate of mono and bilateral absence could suggest a progressive phylogenetic importance loss of such apparatus. M-mode ultrasound enhances the characterization of IJV valve, for this reason it should be taken into consideration to routinely add it to the cerebral venous return investigation.


Ultrasound in Medicine and Biology | 2016

Clinical Applicability of Assessment of Jugular Flow over the Individual Cardiac Cycle Compared with Current Ultrasound Methodology

Francesco Sisini; Mirko Tessari; Erica Menegatti; Maria Elena Vannini; Sergio Gianesini; Valentina Tavoni; Giacomo Gadda; Mauro Gambaccini; Angelo Taibi; Paolo Zamboni

There is growing interest in measuring cerebral venous outflow with ultrasound (US). However, results obtained with the current US Doppler methodology, which uses just a single value of cross-sectional area (CSA) of the vessel, are highly variable and inconclusive. The product of CSA and time-averaged velocity in the case of pulsatile vessels may be a possible source of error, particularly for a pulsatile vein like the internal jugular vein (IJV), where the cardiac pump transmits a sequence of well-established waves along the conduit. We herein propose a novel technique for US IJV flow assessment that accurately accounts for IJV CSA variations during the cardiac cycle. Five subjects were investigated with a high-resolution real-time B-mode video, synchronized with an electrocardiography trace. In this approach, CSA variations representing the pulsatility of the IJV are overlapped with the velocity curve obtained by the usual spectral Doppler trace. The overlap is then phased point by point using the electrocardiography pacemaker. This allows us to experimentally measure the velocity variation in relation to the change in CSA precisely, ultimately enabling calculation of IJV flow. (i) The sequence of CSA variation with respect to the electrocardiography waves corresponds exactly to the jugular venous pulse as measured in physiology. (ii) The methodology permits us to phase the velocity and CSA, which is ultimately what is currently lacking to precisely calculate the flow in the IJV with US. (iii) The time-averaged flow, calculated with the described technique, is very close to that calculated assuming a constant IJV CSA, whereas the time-dependent flow shows differs as much as 40%. (iv) Finally, we tested the accuracy of the technique with a methodology that may allow for universal assessment of the accuracy of each personal US-based evaluation of flow rate.


Behavioural Neurology | 2015

The Oscillating Component of the Internal Jugular Vein Flow: The Overlooked Element of Cerebral Circulation.

Francesco Sisini; Eleuterio F. Toro; Mauro Gambaccini; Paolo Zamboni

The jugular venous pulse (JVP) provides valuable information about cardiac haemodynamics and filling pressures and is an indirect estimate of the central venous pressure (CVP). Recently it has been proven that JVP can be obtained by measuring the cross-sectional area (CSA) of the IJV on each sonogram of an ultrasound B-mode sonogram sequence. It has also been proven that during its pulsation the IJV is distended and hence that the pressure gradient drives the IJV haemodynamics. If this is true, then it will imply the following: (i) the blood velocity in the IJV is a periodic function of the time with period equal to the cardiac period and (ii) the instantaneous blood velocity is given by a time function that can be derived from a flow-dynamics theory that uses the instantaneous pressure gradient as a parameter. The aim of the present study is to confirm the hypothesis that JVP regulates the IJV blood flow and that pressure waves are transmitted from the heart toward the brain through the IJV wall.


American Journal of Neuroradiology | 2016

Validation of a Hemodynamic Model for the Study of the Cerebral Venous Outflow System Using MR Imaging and Echo-Color Doppler Data

Giacomo Gadda; Angelo Taibi; Francesco Sisini; Mauro Gambaccini; S. K. Sethi; D. Utriainen; E. M. Haacke; Paolo Zamboni; Mauro Ursino

BACKGROUND AND PURPOSE: A comprehensive parameter model was developed to investigate correlations between cerebral hemodynamics and alterations in the extracranial venous circulation due to posture changes and/or extracranial venous obstruction (stenosis). The purpose of this work was to validate the simulation results by using MR imaging and echo-color Doppler experimental blood flow data in humans. MATERIALS AND METHODS: To validate the model outcomes, we used supine average arterial and venous extracerebral blood flow, obtained by using phase-contrast MR imaging from 49 individuals with stenosis in the acquisition plane at the level of the disc between the second and third vertebrae of the left internal jugular vein, 20 with stenosis in the acquisition plane at the level of the disc between the fifth and sixth vertebrae of the right internal jugular vein, and 38 healthy controls without stenosis. Average data from a second group of 10 healthy volunteers screened with an echo-color Doppler technique were used to evaluate flow variations due to posture change. RESULTS: There was excellent agreement between experimental and simulated supine flows. Every simulated CBF fell inside the standard error from the corresponding average experimental value, as well as most of the simulated extracerebral arterial flow (extracranial blood flow from the head and face, measured at the level of the disc between second and third vertebrae) and venous flows. Simulations of average jugular and vertebral blood flow variations due to a change of posture from supine to upright also matched the experimental data. CONCLUSIONS: The good agreement between simulated and experimental results means that the model can correctly reproduce the main factors affecting the extracranial circulation and could be used to study other types of stenotic conditions not represented by the experimental data.


Phlebology | 2018

Lower limbs venous kinetics and consequent impact on drainage direction

Sergio Gianesini; Francesco Sisini; Giovanni Di Domenico; Joel Secchiero; Anna Maria Malagoni; Erica Menegatti; Mauro Gambaccini; Paolo Zamboni

Background Literature concerning the lower limbs physiological venous haemodynamics is still lacking of reference velocity values and consequent impact on drainage direction. Aim of the present study is to assess the flow velocities in the different venous compartments, evaluating the possible Venturi effect role, thus finding clues for the identification of the physical model governing the flow direction. Methods Thirty-six lower limbs underwent a velocity and diameters echo-color-Doppler assessment in several anatomical point of analysis along both the deep and superficial venous systems. The investigation protocol included and compared two different manoeuvres to elicit the flow: manual calf compression/relaxation (CR) and active foot dorsiflexion (AFD). Both peak systolic (PSV) and time average velocities (TAV) were measured. Results The different venous segments demonstrated an overlap among the velocity values and the anatomical subdivision of the deep and superficial compartments. At the CR, TAV was 34 ± 12 cm/s in the deep venous system (N1), 15 ± 7 cm/s in the saphenous system (N2), 5 ± 2 cm/s in the saphenous tributaries (N3); PSV was 89 ± 35 cm/s in N1, 34 ± 16 cm/s in N2, 11 ± 4 cm/s in N3, p < 0.05. At the AFD, TAV was 33 ± 13 cm/s in N1, 15 ± 7 in N2, 9 ± 5 in N3; PSV was 83 ± 35 in N1, 32 ± 17 in N2, 15 ± 4 in N3, p < 0.05. A diameter decrease was reported from N1 to N3 (p < 0.05). Conclusion This investigation provides evidences of the velocity decrease from the deepest to the most superficial compartments. These data introduce the Venturi effect as potential factor in the flow aspiration from the tributary to the deeper veins. The reported data represent a first step towards an objective evaluation of the physic laws governing the drainage. These values can constitute the basis for further investigations in pathological and post-procedural scenarios.

Collaboration


Dive into the Francesco Sisini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge