Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Tedesco is active.

Publication


Featured researches published by Francesco Tedesco.


Molecular Immunology | 2011

Inhibiting the C5-C5a receptor axis.

Trent M. Woodruff; Kutty Selva Nandakumar; Francesco Tedesco

Activation of the complement system is a major pathogenic event that drives various inflammatory responses in numerous diseases. All pathways of complement activation lead to cleavage of the C5 molecule generating the anaphylatoxin C5a and, C5b that subsequently forms the terminal complement complex (C5b-9). C5a exerts a predominant pro-inflammatory activity through interactions with the classical G-protein coupled receptor C5aR (CD88) as well as with the non-G protein coupled receptor C5L2 (GPR77), expressed on various immune and non-immune cells. C5b-9 causes cytolysis through the formation of the membrane attack complex (MAC), and sub-lytic MAC and soluble C5b-9 also possess a multitude of non-cytolytic immune functions. These two complement effectors, C5a and C5b-9, generated from C5 cleavage, are key components of the complement system responsible for propagating and/or initiating pathology in different diseases, including paroxysmal nocturnal hemoglobinuria, rheumatoid arthritis, ischemia-reperfusion injuries and neurodegenerative diseases. Thus, the C5-C5a receptor axis represents an attractive target for drug development. This review provides a comprehensive analysis of different methods of inhibiting the generation of C5a and C5b-9 as well as the signalling cascade of C5a via its receptors. These include the inhibition of C5 cleavage through targeting of C5 convertases or via the C5 molecule itself, as well as blocking the activity of C5a by neutralizing antibodies and pharmacological inhibitors, or by targeting C5a receptors per se. Examples of drugs and naturally occurring compounds used are discussed in relation to disease models and clinical trials. To date, only one such compound has thus far made it to clinical medicine: the anti-C5 antibody eculizumab, for treating paroxysmal nocturnal hemoglobinuria. However, a number of drug candidates are rapidly emerging that are currently in early-phase clinical trials. The C5-C5a axis as a target for drug development is highly promising for the treatment of currently intractable major human diseases.


Molecular Immunology | 2009

Complement in human diseases: Lessons from complement deficiencies

Marina Botto; Michael Kirschfink; Paolo Macor; Matthew C. Pickering; Reinhard Würzner; Francesco Tedesco

Complement deficient cases reported in the second half of the last century have been of great help in defining the role of complement in host defence. Surveys of the deficient individuals have been instrumental in the recognition of the clinical consequences of the deficiencies. This review focuses on the analysis of the diseases associated with the deficiencies of the various components and regulators of the complement system and their therapeutic implications. The diagnostic approach leading to the identification of the deficiency is discussed here as a multistep process that starts with the screening assays and proceeds in specialized laboratories with the characterization of the defect at the molecular level. The organization of a registry of complement deficiencies is presented as a means to collect the cases identified in and outside Europe with the aim to promote joint projects on treatment and prevention of diseases associated with defective complement function.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Protection against inflammation- and autoantibody-caused fetal loss by the chemokine decoy receptor D6

Yeny Martinez de la Torre; Chiara Buracchi; Elena Monica Borroni; Jana Dupor; Raffaella Bonecchi; Manuela Nebuloni; Fabio Pasqualini; Andrea Doni; Eleonora Lauri; Chiara Agostinis; Roberta Bulla; Donald N. Cook; Bodduluri Haribabu; Pier Luigi Meroni; Daniel Rukavina; Luca Vago; Francesco Tedesco; Annunciata Vecchi; Sergio A. Lira; Massimo Locati; Alberto Mantovani

Fetal loss in animals and humans is frequently associated with inflammatory conditions. D6 is a promiscuous chemokine receptor with decoy function, expressed in lymphatic endothelium, that recognizes and targets to degradation most inflammatory CC chemokines. Here, we report that D6 is expressed in placenta on invading extravillous trophoblasts and on the apical side of syncytiotrophoblast cells, at the very interface between maternal blood and fetus. Exposure of D6−/− pregnant mice to LPS or antiphospholipid autoantibodies results in higher levels of inflammatory CC chemokines and increased leukocyte infiltrate in placenta, causing an increased rate of fetal loss, which is prevented by blocking inflammatory chemokines. Thus, the promiscuous decoy receptor for inflammatory CC chemokines D6 plays a nonredundant role in the protection against fetal loss caused by systemic inflammation and antiphospholipid antibodies.


Journal of Immunology | 2011

Alternative Pathway Activation of Complement by Shiga Toxin Promotes Exuberant C3a Formation That Triggers Microvascular Thrombosis

Marina Morigi; Miriam Galbusera; Sara Gastoldi; Monica Locatelli; Simona Buelli; Anna Pezzotta; Chiara Pagani; Marina Noris; Marco Gobbi; Matteo Stravalaci; Daniela Rottoli; Francesco Tedesco; Giuseppe Remuzzi; Carlamaria Zoja

Shiga toxin (Stx)-producing E.coli O157:H7 has become a global threat to public health; it is a primary cause of diarrhea-associated hemolytic uremic syndrome (HUS), a disorder of thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure with thrombi occluding renal microcirculation. In this study, we explored whether Stx triggers complement-dependent microvascular thrombosis in in vitro and in vivo experimental settings of HUS. Stx induced on human microvascular endothelial cell surface the expression of P-selectin, which bound and activated C3 via the alternative pathway, leading to thrombus formation under flow. In the search for mechanisms linking complement activation and thrombosis, we found that exuberant complement activation in response to Stx generated an increased amount of C3a that caused further endothelial P-selectin expression, thrombomodulin (TM) loss, and thrombus formation. In a murine model of HUS obtained by coinjection of Stx2 and LPS and characterized by thrombocytopenia and renal dysfunction, upregulation of glomerular endothelial P-selectin was associated with C3 and fibrin(ogen) deposits, platelet clumps, and reduced TM expression. Treatment with anti–P-selectin Ab limited glomerular C3 accumulation. Factor B-deficient mice after Stx2/LPS exhibited less thrombocytopenia and were protected against glomerular abnormalities and renal function impairment, indicating the involvement of complement activation via the alternative pathway in the glomerular thrombotic process in HUS mice. The functional role of C3a was documented by data showing that glomerular fibrin(ogen), platelet clumps, and TM loss were markedly decreased in HUS mice receiving C3aR antagonist. These results identify Stx-induced complement activation, via P-selectin, as a key mechanism of C3a-dependent microvascular thrombosis in diarrhea-associated HUS.


European Journal of Immunology | 2002

The membrane attack complex of complement induces caspase activation and apoptosis

Alma J. Nauta; Mohamed R. Daha; Odette Tijsma; Bob van de Water; Francesco Tedesco; Anja Roos

Activation of the terminal pathway of the complement system leads to insertion of terminal complement complexes (C5b‐9) into the cell membrane, which may induce cytolysis. Recent data indicatethat the terminal complement pathway can also result in apoptosis in vivo. To further define the cell death pathway induced by complement, we examined induction of apoptosis by complement in vitro. Rat mesangial cells opsonized with a complement‐activating antibody and exposed to rat serum as a complement source underwent apoptotic cell death in a time‐ and dose‐dependent fashion, as demonstrated by membrane exposure of phosphatidylserine and fragmentation of nuclei. No significant apoptosis was detected in either cultures treated with C6‐deficient serum or in control cultures. The pan‐caspase‐inhibitor zVAD‐fmk inhibited complement‐induced apoptosis completely. In line with this observation, complement induced cleavage and activation of caspase 3. Importantly, cellular exposure to purified cytolytically inactive C5b‐9, in the absence of antibody and early complement components, also resulted into caspase activation and apoptosis. Together, these results indicate that C5b‐9 is involved in induction of apoptosis via a caspase‐dependent pathway. Apoptosis as a consequence of complement‐mediated cell damage may provide an explanation for the presence of apoptosis in inflammatory processes, for instance in hyperacute xenograft rejection.


Cancer Research | 2009

CD38/CD31, the CCL3 and CCL4 Chemokines, and CD49d/Vascular Cell Adhesion Molecule-1 Are Interchained by Sequential Events Sustaining Chronic Lymphocytic Leukemia Cell Survival

Antonella Zucchetto; Dania Benedetti; Claudio Tripodo; Riccardo Bomben; Michele Dal Bo; Daniela Marconi; Fleur Bossi; Debora Lorenzon; Massimo Degan; Francesca Rossi; Davide Rossi; Pietro Bulian; Vito Franco; Giovanni Del Poeta; Silvia Deaglio; Gianluca Gaidano; Francesco Tedesco; Fabio Malavasi; Valter Gattei

CD38 and CD49d are associated negative prognosticators in chronic lymphocytic leukemia (CLL). Despite evidence that both molecules are involved in interactions occurring between CLL and normal cells in the context of CLL-involved tissues, a functional link is still missing. Using gene expression profiles comparing CD38(+)CD49d(+) versus CD38(-)CD49d(-) CLL cells, we showed overexpression of the CCL3 and CCL4 chemokines in cells from the former group. These chemokines were also up-regulated by CD38 signals in CLL; moreover, CCL3 was expressed by CLL cells from bone marrow biopsies (BMB) of CD38(+)CD49d(+) but not CD38(-)CD49d(-) cases. High levels of CCR1 and, to a lesser extent, CCR5, the receptors for CCL3 and CCL4, were found in CLL-derived monocyte-macrophages. Consistently, CCL3 increased monocyte migration, and CD68(+) macrophage infiltration was particularly high in BMB from CD38(+)CD49d(+) CLL. Conditioned media from CCL3-stimulated macrophages induced endothelial cells to express vascular cell adhesion molecule-1 (VCAM-1), the CD49d ligand, likely through tumor necrosis factor alpha overproduction. These effects were apparent in BMB from CD38(+)CD49d(+) CLL, where lymphoid infiltrates were characterized by a prominent meshwork of VCAM-1(+) stromal/endothelial cells. Lastly, CD49d engagement by VCAM-1 transfectants increased viability of CD38(+)CD49d(+) CLL cells. Altogether, CD38 and CD49d can be thought of as parts of a consecutive chain of events ultimately leading to improved survival of CLL cells.


Cancer Research | 2007

In vivo Targeting of Human Neutralizing Antibodies against CD55 and CD59 to Lymphoma Cells Increases the Antitumor Activity of Rituximab

Paolo Macor; Claudio Tripodo; Sonia Zorzet; Erich Piovan; Fleur Bossi; Roberto Marzari; Alberto Amadori; Francesco Tedesco

An in vivo model of human CD20+ B-lymphoma was established in severe combined immunodeficiency mice to test the ability of human neutralizing miniantibodies to CD55 and CD59 (MB55 and MB59) to enhance the therapeutic effect of rituximab. The miniantibodies contained single-chain fragment variables and the hinge-CH2-CH3 domains of human IgG(1). LCL2 cells were selected for the in vivo study among six B-lymphoma cell lines for their high susceptibility to rituximab-dependent complement-mediated killing enhanced by MB55 and MB59. The cells injected i.p. primarily colonized the liver and spleen, leading to the death of the animals within 30 to 40 days. Thirty percent of mice receiving biotin-labeled rituximab (25 microg) i.p. on days 4 and 11 after cell injection survived to 120 days. Administration of biotin-labeled rituximab, followed by avidin (40 microg) and biotin-labeled MB55-MB59 (100 microg) at 4-h intervals after each injection resulted in the survival of 70% of mice. Surprisingly, 40% of mice survived after the sole injection of avidin and biotin-labeled MB55-MB59, an observation consistent with the in vitro data showing that the miniantibodies induced killing of approximately 25% cells through antibody-dependent cell cytotoxicity. In conclusion, MB55 and MB59 targeted to tumor cells represent a valuable tool to enhance the therapeutic effect of rituximab and other complement-fixing antitumor antibodies.


Molecular Immunology | 1999

Complement-endothelial cell interactions: pathophysiological implications.

Francesco Tedesco; Fabio Fischetti; Mario Pausa; Aldo Dobrina; Robert B. Sim; Mohamed R. Daha

The function of the endothelial cells can be modulated by humoral factors present in the circulation and in the extravascular fluid, including proteins of the complement system. This review examines the multiple interactions between the complement system and the endothelial cells and their functional consequences on inflammation, coagulation and regulation of vascular tone. The implications of these interactions in the induction and progression of the vascular lesions occurring in atherosclerosis, ischemia/reperfusion and xenotransplantation and the possible therapeutic approaches in terms of complement regulation are also discussed.


Biochimica et Biophysica Acta | 1975

Studies on the mechanism of metabolic stimulation in polymorphonuclear leucocytes during phagocytosis I. Evidence for superoxide anion involvement in the oxidation of NADPH2

Pierluigi Patriarca; Pietro Dri; K. Kakinuma; Francesco Tedesco; F. Rossi

1. The oxidation of NADPH2 by leucocyte granules, as measured at acid pH in the presence of Mn-2+, was found to be inhibited by superoxide dismutase. 2. Omission of Mn-2+ markedly lowered the oxidase activity at acid pH, which was still inhibited by superoxide dismutase. 3. At alkaline pH the oxidase activity was lower than at acid pH. 4. During oxidation of NADPH2 by leucocyte granules, reduction of cytochrome c occurred which was partially inhibited by superoxide dismutase. 5. It was concluded that NADPH2 oxidation occurs through an enzymatic reaction and a nonenzymatic chain reaction. Superoxide anion (O-minus-2 and NADPH- free radical would be involved in the chain reaction. The differential sensitivity of NADPH2 oxidation to superoxide dismutase in different experimental conditions (see above 1, 2 and 3) was explained on the basis of changes in the properties of the chain reaction.


Journal of Immunology | 2004

Platelet-Activating Factor and Kinin-Dependent Vascular Leakage as a Novel Functional Activity of the Soluble Terminal Complement Complex

Fleur Bossi; Fabio Fischetti; Valentina Pellis; Roberta Bulla; Elisabetta Ferrero; Tom Eirik Mollnes; Domenico Regoli; Francesco Tedesco

The infrequent occurrence of septic shock in patients with inherited deficiencies of the terminal complement components experiencing meningococcal disease led us to suspect that the terminal complement complex is involved in vascular leakage. To this end, the permeabilizing effect of the cytolytically inactive soluble terminal complement complex (SC5b-9) was tested in a Transwell system measuring the amount of fluorescein-labeled BSA (FITC-BSA) leaked through a monolayer of endothelial cells. The complex caused increased permeability to FITC-BSA after 15 min as opposed to the prompt response to bradykinin (BK). The effect of SC5b-9 was partially reduced by HOE-140 or CV-3988, two selective antagonists of BK B2 and platelet-activating factor receptors, respectively, and was completely neutralized by the mixture of the two antagonists. Also, DX-88, a specific inhibitor of kallikrein, partially inhibited the activity of SC5b-9. The permeabilizing factor(s) released after 30 min of incubation of endothelial cells with SC5b-9 caused a prompt leakage of albumin like BK. Intravital microscopy confirmed both the extravasation of circulating FITC-BSA across mesenteric microvessels 15 min after topical application of SC5b-9 and the complete neutralization by the mixture of HOE-140 and CV-3988. SC5b-9 induced opening of interendothelial junctions in mesenteric endothelium documented by transmission electron microscopy.

Collaboration


Dive into the Francesco Tedesco's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge