Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Travascio is active.

Publication


Featured researches published by Francesco Travascio.


Spine | 2008

EFFECT OF COMPRESSION AND ANISOTROPY ON THE DIFFUSION OF GLUCOSE IN ANNULUS FIBROSUS

Alicia R. Jackson; Tai Yi Yuan; Chun Yuh Huang; Francesco Travascio; Wei Yong Gu

Study Design. Investigation of the effect of static compression and anisotropy on the apparent diffusivity of glucose in bovine annulus fibrosus (AF). Objective. To determine the apparent glucose diffusivity in 2 directions (axial and radial) of bovine AF under 3 levels of compressive strain (0%, 10%, and 20%). Summary of Background Data. Knowledge of diffusivity of small molecules is important for understanding nutritional supply in intervertebral discs and the mechanisms of disc degeneration. However, little is known regarding the strain-dependent and anisotropic behavior of glucose diffusivity in intervertebral discs. Methods. Apparent glucose diffusivity measurements were performed on 10 axial and 10 radial AF specimens from bovine coccygeal discs. The dependence of diffusivity on compression was determined using 3 levels of strain (0%, 10%, and 20%). Results. The apparent glucose diffusivity (mean ± standard deviation) of the bovine AF in the axial direction was 1.38 ± 0.015 × 10−6 cm2/s (n = 10) at 0%, 1.00 ± 0.070 × 10−6 cm2/s (n = 10) at 10%, and 7.65 ± 0.552 × 10−7 cm2/s (n = 10) at 20% compression. For radial specimens, the apparent glucose diffusivity was determined to be 9.17 ± 1.12 × 10−7 cm2/s (n = 10), 7.29 ± 0.863 × 10−7 cm2/s (n = 10), and 5.43 ± 1.16 × 10−7 cm2/s (n = 10) for 0%, 10%, and 20% compressions, respectively. A significant decrease in diffusivity with increasing strain was found for both axial and radial specimens [analysis of variance (ANOVA), P < 0.05]. Diffusion in the radial direction was determined to be significantly less than that in the axial direction (ANOVA, P < 0.05). A significant interaction was found between the level of strain and the direction of diffusion (ANOVA, P < 0.05). Conclusion. Diffusion of glucose in bovine AF is dependent on strain and the direction of diffusion.


Journal of Orthopaedic Research | 2009

Relationship between solute transport properties and tissue morphology in human annulus fibrosus.

Francesco Travascio; Alicia R. Jackson; Mark D. Brown; Wei Yong Gu

Poor nutritional supply to the intervertebral disc is believed to be an important factor leading to disc degeneration. However, little is known regarding nutritional transport in human annulus fibrosus (AF) and its relation to tissue morphology. We hypothesized that solute diffusivity in human AF is anisotropic and inhomogeneous, and that transport behaviors are associated with tissue composition and structure. To test these hypotheses, we measured the direction‐dependent diffusivity of a fluorescent molecule (fluorescein, 332 Da) in three regions of AF using a fluorescence recovery after photobleaching (FRAP) technique, and associated transport results to the regional variation in water content and collagen architecture in the tissue. Diffusivity in AF was anisotropic, with higher values in the axial direction than in the radial direction for all regions investigated. The values of the diffusion coefficient ranged from 0.38 ± 0.25 × 10−6 cm2/s (radial diffusivity in outer AF) to 2.68 ± 0.84 × 10−6 cm2/s (axial diffusivity in inner AF). In both directions, diffusivity decreased moving from inner to outer AF. Tissue structure was investigated using both scanning electron microscopy and environmental scanning electron microscopy. A unique arrangement of microtubes was found in human AF. Furthermore, we also found that the density of these microtubes varied moving from inner to outer AF. A similar trend of regional variation was found for water content, with the highest value also measured in inner AF. Therefore, we concluded that a relationship exists among the anisotropic and inhomogeneous diffusion in human AF and the structure and composition of the tissue.


Journal of Biomechanics | 2012

Quantitative analysis of exogenous IGF-1 administration of intervertebral disc through intradiscal injection

Chun Yuh Charles Huang; Francesco Travascio; Wei Yong Gu

Exogenous administration of IGF-1 has been proposed as a therapy for disc degeneration. The objectives of this study were to develop a numerical model for quantitatively analysing exogenous administration of IGF-1 into the intervertebral disc (IVD) via intradiscal injection and to investigate the effects of IGF-1 administration on distribution of glucose and oxygen in the IVD. In this study, the reversible binding reaction between IGF-1 and IGF binding proteins was incorporated into the mechano-electrochemical mixture model. The model was used to numerically analyse transport of IGF-1, glucose, oxygen and lactate in the IVD after IGF-1 administration. The enhancement of IGF-1 on lactate production was also taken into account in the theoretical model. The numerical analyses using finite element method demonstrated that the binding reactions significantly affect the time-dependent distribution of IGF-1 in the IVD. It was found that the region affected by IGF-1 was smaller and the duration of the therapeutic IGF-1 level was longer in the degenerated disc with a higher concentration of IGF binding proteins. It was also found that the IGF-1 injection can reduce glucose concentration and increase lactate accumulation (i.e., lower pH) in the IVD and these influences were regulated by the IGF-1 binding reactions. This study indicated the complexity of intradiscal administration of growth factors, which needs to be fully analysed in order to achieve a successful outcome. The new theoretical model developed in this study can serve as a powerful tool in analysing and designing the optimal treatments of growth factors for disc degeneration.


Journal of Biomechanical Engineering-transactions of The Asme | 2009

Effect of Mechanical Loading on Electrical Conductivity in Human Intervertebral Disk

Alicia R. Jackson; Francesco Travascio; Wei Yong Gu

The intervertebral disk (IVD), characterized as a charged, hydrated soft tissue, is the largest avascular structure in the body. Mechanical loading to the disk results in electromechanical transduction phenomenon as well as altered transport properties. Electrical conductivity is a material property of tissue depending on ion concentrations and diffusivities, which are in turn functions of tissue composition and structure. The aim of this study was to investigate the effect of mechanical loading on electrical behavior in human IVD tissues. We hypothesized that electrical conductivity in human IVD is strain-dependent, due to change in tissue composition caused by compression, and inhomogeneous, due to tissue structure and composition. We also hypothesized that conductivity in human annulus fibrosus (AF) is anisotropic, due to the layered structure of the tissue. Three lumbar IVDs were harvested from three human spines. From each disk, four AF specimens were prepared in each of the three principal directions (axial, circumferential, and radial), and four axial nucleus pulposus (NP) specimens were prepared. Conductivity was determined using a four-wire sense-current method and a custom-designed apparatus by measuring the resistance across the sample. Resistance measurements were taken at three levels of compression (0%, 10%, and 20%). Scanning electron microscopy (SEM) images of the human AF tissue were obtained in order to correlate tissue structure with conductivity results. Increasing compressive strain significantly decreased conductivity for all groups (p<0.05, analysis of variance (ANOVA)). Additionally, specimen orientation significantly affected electrical conductivity in the AF tissue, with conductivity in the radial direction being significantly lower than that in the axial or circumferential directions at all levels of compressive strain (p<0.05, ANOVA). Finally, conductivity in the NP tissue was significantly higher than that in the AF tissue (p<0.05, ANOVA). SEM images of the AF tissues showed evidence of microtubes orientated in the axial and circumferential directions, but not in the radial direction. This may suggest a relationship between tissue morphology and the anisotropic behavior of conductivity in the AF. The results of this investigation demonstrate that electrical conductivity in human IVD is strain-dependent and inhomogeneous, and that conductivity in the human AF tissue is anisotropic (i.e., direction-dependent). This anisotropic behavior is correlated with tissue structure shown in SEM images. This study provides important information regarding the effects of mechanical loading on solute transport and electrical behavior in IVD tissues.


Journal of Biomechanics | 2014

Modeling the role of IGF-1 on extracellular matrix biosynthesis and cellularity in intervertebral disc

Francesco Travascio; Shady Elmasry; Shihab Asfour

The insulin-like growth factor-1 (IGF-1) is a well-known anabolic agent for intervertebral disc (IVD), promoting both proteoglycan (PG) biosynthesis and cell proliferation. Accordingly, it is believed that IGF-1 may play a central role in IVD homeostasis. Furthermore, the exogenous administration of IGF-1 has been proposed as a possible therapeutic strategy for disc degeneration. The objectives of this study were to develop a new computational framework for describing the mechanisms regulating IGF-mediated homeostasis in IVD, and to apply this numerical tool for investigating the effectiveness of exogenous administration of IGF-1 for curing disc degeneration. A diffusive-reactive model was developed for describing competitive binding of IGF-1 to its binding proteins and cell surface receptors, with the latter reaction initiating the intracellular signaling mechanism leading to PG production and cell proliferation. Because PG production increases cell metabolic rate, and cell proliferation increases nutritional demand, nutrients transport and metabolism were also included into the model, and co-regulated, together with IGF-1, IVD cellularity. The sustainability and the effectiveness of IGF-mediated anabolism were investigated for conditions of pathologically insufficient nutrient supply, and for the case of exogenous administration of IGF-1 to degenerated IVD. Results showed that pathological nutrients deprivation, by decreasing cellularity, caused a reduction of PG biosynthesis. Also, exogenous administration of IGF-1 was only beneficial in well-nourished regions of IVD, and exacerbated cell mortality in malnourished regions. These findings remark the central role of nutrition in IVD health, and suggest that adequate nutritional supply is paramount for achieving a successful IGF-based therapy for disc degeneration.


Annals of Biomedical Engineering | 2011

Simultaneous Measurement of Anisotropic Solute Diffusivity and Binding Reaction Rates in Biological Tissues by FRAP

Francesco Travascio; Wei Yong Gu

Several solutes (e.g., growth factors, cationic solutes, etc.) can reversibly bind to the extracellular matrix (ECM) of biological tissues. Binding interactions have significant implications on transport of such solutes through the ECM. In order to fully delineate transport phenomena in biological tissues, knowledge of binding kinetics is crucial. In this study, a new method for the simultaneous determination of solute anisotropic diffusivity and binding reaction rates was presented. The new technique was solely based on Fourier analysis of fluorescence recovery after photobleaching (FRAP) images. Computer-simulated FRAP tests were used to assess the sensitivity and the robustness of the method to experimental parameters, such as anisotropic solute diffusivity and rates of binding reaction. The new method was applied to the determination of diffusivity and binding rates of 5-dodecanoylaminofluorescein (DAF) in bovine coccygeal annulus fibrosus (AF). Our findings indicate that DAF reversibly binds to the ECM of AF. In addition, it was found that DAF diffusion in AF is anisotropic. The results were in agreement with those reported in previous studies. This study provides a new tool for the simultaneous determination of solute anisotropic diffusion tensor and rates of binding reaction that can be used to investigate diffusive–reactive transport in biological tissues and tissue engineered constructs.


PLOS ONE | 2015

Effects of Tobacco Smoking on the Degeneration of the Intervertebral Disc: A Finite Element Study

Shady Elmasry; Shihab Asfour; Juan Pablo de Rivero Vaccari; Francesco Travascio

Tobacco smoking is associated with numerous pathological conditions. Compelling experimental evidence associates smoking to the degeneration of the intervertebral disc (IVD). In particular, it has been shown that nicotine down-regulates both the proliferation rate and glycosaminoglycan (GAG) biosynthesis of disc cells. Moreover, tobacco smoking causes the constriction of the vascular network surrounding the IVD, thus reducing the exchange of nutrients and anabolic agents from the blood vessels to the disc. It has been hypothesized that both nicotine presence in the IVD and the reduced solute exchange are responsible for the degeneration of the disc due to tobacco smoking, but their effects on tissue homeostasis have never been quantified. In this study, a previously presented computational model describing the homeostasis of the IVD was deployed to investigate the effects of impaired solute supply and nicotine-mediated down-regulation of cell proliferation and biosynthetic activity on the health of the disc. We found that the nicotine-mediated down-regulation of cell anabolism mostly affected the GAG concentration at the cartilage endplate, reducing it up to 65% of the value attained in normal physiological conditions. In contrast, the reduction of solutes exchange between blood vessels and disc tissue mostly affected the nucleus pulposus, whose cell density and GAG levels were reduced up to 50% of their normal physiological levels. The effectiveness of quitting smoking on the regeneration of a degenerated IVD was also investigated, and showed to have limited benefit on the health of the disc. A cell-based therapy in conjunction with smoke cessation provided significant improvements in disc health, suggesting that, besides quitting smoking, additional treatments should be implemented in the attempt to recover the health of an IVD degenerated by tobacco smoking.


Volume 1B: Extremity; Fluid Mechanics; Gait; Growth, Remodeling, and Repair; Heart Valves; Injury Biomechanics; Mechanotransduction and Sub-Cellular Biophysics; MultiScale Biotransport; Muscle, Tendon and Ligament; Musculoskeletal Devices; Multiscale Mechanics; Thermal Medicine; Ocular Biomechanics; Pediatric Hemodynamics; Pericellular Phenomena; Tissue Mechanics; Biotransport Design and Devices; Spine; Stent Device Hemodynamics; Vascular Solid Mechanics; Student Paper and Design Competitions | 2013

Articular Cartilage Biomechanics Modeled via an Intrinsically Compressible Biphasic Model: Implications and Deviations From an Incompressible Biphasic Approach

Francesco Travascio; Roberto Serpieri; Shihab Asfour

Biphasic continuum models have been extensively deployed for modeling macroscopic articular cartilage biomechanics [1,2]. This consolidated theoretical approach schematizes tissue as a mixture of an elastic solid matrix embedded in a fluid phase. In physiological conditions, intrinsic compressibility of each phase is very limited when compared to the whole tissue macroscopic counterpart. Based on such experimental evidence, intrinsic phase compressibility is generally reasonably neglected [3]. Hence, traditionally, cartilage biomechanics models have been developed on the basis of incompressible biphasic formulations [3–5], often referred to as Incompressible Theories of Mixtures (ITM). Alternatively, a more general biphasic model for cartilage biomechanics, accounting for full intrinsic compressibility of phases, may be considered. A consistent theoretical formulation of this type has been recently made available [6,7], hereby referred to as Theory of Microscopically Compressible Porous Media (TMCPM). In the present contribution, a new model for articular cartilage biomechanics, based on TMCPM, was developed. Predictions of this new model, and its deviations from a traditional ITM approach were studied. In particular, deviations between compressible and incompressible theoretical frameworks were investigated with a specific focus on the repercussions on models’ capability of characterizing fundamental tissue properties, such as hydraulic permeability, via established experimental testing procedures.Copyright


Archive | 2016

Variational Theories of Two-Phase Continuum Poroelastic Mixtures: A Short Survey

Roberto Serpieri; Alessandro Della Corte; Francesco Travascio; Luciano Rosati

A comprehensive survey is presented on two-phase and multi-phase continuum poroelasticity theories whose governing equations at a macroscopic level are based, to different extents, either on the application of classical variational principles or on variants of Hamilton’s least Action principle. As a focal discussion, the ‘closure problem’ is recalled, since it is widespread opinion in the multiphase poroelasticity community that even the simpler two-phase purely-mechanical problem of poroelasticity has to be regarded as a still-open problem of applied continuum mechanics. This contribution integrates a previous review by Bedford and Drumheller, and covers the period from the early use of variational concepts by Biot, together with the originary employment of porosity-enriched kinematics by Cowin and co-workers, up to variational theories of multiphase poroelasticity proposed in the most recent years.


Journal of Spine | 2015

Implications of Decompressive Surgical Procedures for Lumbar Spine Stenosis on the Biomechanics of the Adjacent Segment: A Finite Element Analysis

Francesco Travascio; Shihab Asfour; Joseph P. Gjolaj; Loren L. Latta; Shady Elmasry; Frank J. Eismont

Surgeries for Lumbar Spinal Stenosis (LSS) aim at decompressing spinal nerves and relieving symptoms of radiculopathy or myelopathy. Frequently after surgery, stenosis may progress in adjacent spinal segments, but the etiology of adjacent segment degeneration is still unclear. It is hypothesized that surgical approaches for LSS may alter the normal biomechanics of adjacent segments, eventually contributing to the development of stenosis. This study investigated implications of established decompressive surgical approaches on adjacent segments biomechanics. A realistic finite element model of a L1-L5 human lumbar spine was used for assessing changes in spine segments’ biomechanics due to laminotomy and laminectomy surgeries. First, the model was validated by comparing its predictions to previously reported spine kinematic data obtained after multi-level laminotomy and laminectomy. Subsequently, using a hybrid loading protocol, segments’ kinematics, intradiscal pressure, and stress in flexionextension were investigated simulating single level (L4-L5) laminotomy and laminectomy procedures. Alterations of spine segments biomechanics due to laminotomy were minimal. In contrast, after laminectomy, the L3-L4 range of motion, intradiscal pressure, and stress increased up to 50%, 20%, and 120%, respectively. These results suggest that laminotomy represents a better approach than laminectomy for reducing risks of spine instability or mechanically-accelerated disc degeneration in adjacent segments.

Collaboration


Dive into the Francesco Travascio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luciano Rosati

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arzu Onar-Thomas

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge