Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francescopaolo Di Cello is active.

Publication


Featured researches published by Francescopaolo Di Cello.


Cellular Microbiology | 2003

The K1 capsule modulates trafficking of E. coli-containing vacuoles and enhances intracellular bacterial survival in human brain microvascular endothelial cells

Kee Jun Kim; Simon Elliott; Francescopaolo Di Cello; Monique F. Stins; Kwang Sik Kim

Escherichia coli K1 has been shown to invade human brain microvascular endothelial cells (HBMEC) in vitro and translocate the blood–brain barrier in vivo, but it is unclear how E. coli K1 traverses HBMEC. We have previously shown that internalized E. coli K1 is localized within membrane‐bound vacuole in HBMEC. The present study was carried out to understand intracellular trafficking of E. coli K1 containing vacuoles (ECVs) in HBMEC. ECVs initially acquired two early endosomal marker proteins, EEA1 and transferrin receptor. Rab7 and Lamp‐1, markers for late endosome and late endosome/lysosome, respectively, were subsequently recruited on the ECVs, which was confirmed with flow cytometry analysis of ECVs. However, ECVs did not obtain cathepsin D, a lysosomal enzyme, even after 120 min incubation, suggesting that E. coli K1 avoids lysosomal fusion. In contrast, isogenic K1 capsule‐deletion mutant obtained early and late endosomal markers on vacuolar membranes and allowed lysosomal fusion with subsequent degradation inside vacuoles. This observation was consistent with the decreased intracellular survival of K1 capsule‐deletion mutant, even though the binding and internalization rates of the mutant were higher than those of the parent E. coli K1 strain. This is the first demonstration that E. coli K1, via the K1 capsule on the bacterial surface, modulates the maturation process of ECVs and prevents fusion with lysosomes, which is an event necessary for traversal of the blood–brain barrier as live bacteria.


Infection and Immunity | 2005

Escherichia coli K1 RS218 Interacts with Human Brain Microvascular Endothelial Cells via Type 1 Fimbria Bacteria in the Fimbriated State

Ching Hao Teng; Mian Cai; Sooan Shin; Yi Xie; Kee-Jun Kim; Naveed Ahmed Khan; Francescopaolo Di Cello; Kwang Sik Kim

ABSTRACT Escherichia coli K1 is a major gram-negative organism causing neonatal meningitis. E. coli K1 binding to and invasion of human brain microvascular endothelial cells (HBMEC) are a prerequisite for E. coli penetration into the central nervous system in vivo. In the present study, we showed using DNA microarray analysis that E. coli K1 associated with HBMEC expressed significantly higher levels of the fim genes compared to nonassociated bacteria. We also showed that E. coli K1 binding to and invasion of HBMEC were significantly decreased with its fimH deletion mutant and type 1 fimbria locked-off mutant, while they were significantly increased with its type 1 fimbria locked-on mutant. E. coli K1 strains associated with HBMEC were predominantly type 1 fimbria phase-on (i.e., fimbriated) bacteria. Taken together, we showed for the first time that type 1 fimbriae play an important role in E. coli K1 binding to and invasion of HBMEC and that type 1 fimbria phase-on E. coli is the major population interacting with HBMEC.


Molecular Cancer Research | 2008

HMGA2 participates in transformation in human lung cancer.

Francescopaolo Di Cello; Joelle Hillion; Alexandra C. Hristov; Lisa Wood; Mita Mukherjee; Andrew Schuldenfrei; Jeanne Kowalski; Raka Bhattacharya; Raheela Ashfaq; Linda M. S. Resar

Although previous studies have established a prominent role for HMGA1 (formerly HMG-I/Y) in aggressive human cancers, the role of HMGA2 (formerly HMGI-C) in malignant transformation has not been clearly defined. The HMGA gene family includes HMGA1, which encodes the HMGA1a and HMGA1b protein isoforms, and HMGA2, which encodes HMGA2. These chromatin-binding proteins function in transcriptional regulation and recent studies also suggest a role in cellular senescence. HMGA1 proteins also appear to participate in cell cycle regulation and malignant transformation, whereas HMGA2 has been implicated primarily in the pathogenesis of benign, mesenchymal tumors. Here, we show that overexpression of HMGA2 leads to a transformed phenotype in cultured lung cells derived from normal tissue. Conversely, inhibiting HMGA2 expression blocks the transformed phenotype in metastatic human non–small cell lung cancer cells. Moreover, we show that HMGA2 mRNA and protein are overexpressed in primary human lung cancers compared with normal tissue or indolent tumors. In addition, there is a statistically significant correlation between HMGA2 protein staining by immunohistochemical analysis and tumor grade (P < 0.001). Our results indicate that HMGA2 is an oncogene important in the pathogenesis of human lung cancer. Although additional studies with animal models are needed, these findings suggest that targeting HMGA2 could be therapeutically beneficial in lung cancer and other cancers characterized by increased HMGA2 expression. (Mol Cancer Res 2008;6(5):743–50)


Cancer Research | 2008

The High-Mobility Group A1a/Signal Transducer and Activator of Transcription-3 Axis: An Achilles Heel for Hematopoietic Malignancies?

Joelle Hillion; Surajit Dhara; Takita Felder Sumter; Mita Mukherjee; Francescopaolo Di Cello; Amy Belton; James Turkson; Souyma Jaganathan; Linzhao Cheng; Zhaohui Ye; Richard Jove; Peter D. Aplan; Ying Wei Lin; Kelsey J. Wertzler; Ray Reeves; Ossama Elbahlouh; Jeanne Kowalski; Raka Bhattacharya; Linda M. S. Resar

Although HMGA1 (high-mobility group A1; formerly HMG-I/Y) is an oncogene that is widely overexpressed in aggressive cancers, the molecular mechanisms underlying transformation by HMGA1 are only beginning to emerge. HMGA1 encodes the HMGA1a and HMGA1b protein isoforms, which function in regulating gene expression. To determine how HMGA1 leads to neoplastic transformation, we looked for genes regulated by HMGA1 using gene expression profile analysis. Here, we show that the STAT3 gene, which encodes the signaling molecule signal transducer and activator of transcription 3 (STAT3), is a critical downstream target of HMGA1a. STAT3 mRNA and protein are up-regulated in fibroblasts overexpressing HMGA1a and activated STAT3 recapitulates the transforming activity of HMGA1a in fibroblasts. HMGA1a also binds directly to a conserved region of the STAT3 promoter in vivo in human leukemia cells by chromatin immunoprecipitation and activates transcription of the STAT3 promoter in transfection experiments. To determine if this pathway contributes to HMGA1-mediated transformation, we investigated STAT3 expression in our HMGA1a transgenic mice, all of which developed aggressive lymphoid malignancy. STAT3 expression was increased in the leukemia cells from our transgenics but not in control cells. Blocking STAT3 function induced apoptosis in the transgenic leukemia cells but not in controls. In primary human leukemia samples, there was a positive correlation between HMGA1a and STAT3 mRNA. Moreover, blocking STAT3 function in human leukemia or lymphoma cells led to decreased cellular motility and foci formation. Our results show that the HMGA1a-STAT3 axis is a potential Achilles heel that could be exploited therapeutically in hematopoietic and other malignancies overexpressing HMGA1a.


Cancer Research | 2007

The High-Mobility Group A1 Gene Up-Regulates Cyclooxygenase 2 Expression in Uterine Tumorigenesis

Abeba Tesfaye; Francescopaolo Di Cello; Joelle Hillion; Brigitte M. Ronnett; Ossama Elbahloul; Raheela Ashfaq; Surajit Dhara; Edward V. Prochownik; Kathryn Tworkoski; Raymond Reeves; Richard Roden; Lora Hedrick Ellenson; David L. Huso; Linda M. S. Resar

Uterine cancer is the most common cancer of the female genital tract and is the fourth most frequent cause of cancer death in women in the U.S. Despite the high prevalence of uterine cancers, the molecular events that lead to neoplastic transformation in the uterus are poorly understood. Moreover, there are limited mouse models to study these malignancies. We generated transgenic mice with high-mobility group A1 gene (HMGA1a) expression targeted to uterine tissue and all female mice developed tumors by 9 months of age. Histopathologically, the tumors resemble human uterine adenosarcoma and are transplantable. To determine whether these findings are relevant to human disease, we evaluated primary human uterine neoplasms and found that HMGA1a mRNA and protein levels are increased in most high-grade neoplasms but not in normal uterine tissue, benign tumors, or most low-grade neoplasms. We also found that HMGA1a up-regulates cyclooxygenase 2 (COX-2) expression in transgenic tumors. Moreover, both HMGA1a and COX-2 expression are up-regulated in high-grade human leiomyosarcomas. Using chromatin immunoprecipitation, HMGA1a binds directly to the COX-2 promoter in human uterine cancer cells in vivo and activates its expression in transfection experiments. We also show that blocking either HMGA1a or COX-2 in high-grade human uterine cancer cells blocks anchorage-independent cell growth in methylcellulose. These findings show that HMGA1a functions as an oncogene when overexpressed in the uterus and contributes to the pathogenesis of human uterine cancer by activating COX-2 expression. Although a larger study is needed to confirm these results, HMGA1a may be a useful marker for aggressive human uterine cancers.


Modern Pathology | 2010

HMGA1 correlates with advanced tumor grade and decreased survival in pancreatic ductal adenocarcinoma

Alexandra C. Hristov; Leslie Cope; Francescopaolo Di Cello; Marcelo Delos Reyes; Mansher Singh; Joelle Hillion; Amy Belton; Biju Joseph; Andrew Schuldenfrei; Christine A. Iacobuzio-Donahue; Anirban Maitra; Linda M. S. Resar

Although pancreatic ductal adenocarcinoma is a common and almost uniformly fatal cancer, little is known about the molecular events that lead to tumor progression. The high-mobility group A1 (HMGA1) protein is an architectural transcription factor that has been implicated in the pathogenesis and progression of diverse human cancers, including pancreatic ductal adenocarcinoma. In this study, we investigated HMGA1 expression in pancreatic ductal adenocarcinoma cell lines and surgically resected tumors to determine whether it could be a marker for more advanced disease. By real-time quantitative RT-PCR, we measured HMGA1a mRNA in cultured pancreatic ductal adenocarcinoma cell lines and found increased levels in all cancer cells compared with normal pancreatic tissue. To investigate HMGA1 in primary human tumors, we performed immunohistochemical analysis of 125 cases of pancreatic adenocarcinoma and 99 precursor lesions (PanIN 1–3). We found nuclear staining for HMGA1 in 98% of cases of pancreatic adenocarcinoma, but only 43% of cases of PanIN precursor lesions. Moreover, HMGA1 immunoreactivity correlates positively with decreased survival and advanced tumor and PanIN grade. These results suggest that HMGA1 promotes tumor progression in pancreatic ductal adenocarcinoma and could be a useful biomarker and rational therapeutic target in advanced disease.


Infection and Immunity | 2006

Effects of ompA Deletion on Expression of Type 1 Fimbriae in Escherichia coli K1 Strain RS218 and on the Association of E. coli with Human Brain Microvascular Endothelial Cells

Ching Hao Teng; Yi Xie; Sooan Shin; Francescopaolo Di Cello; Maneesh Paul-Satyaseela; Mian Cai; Kwang Sik Kim

ABSTRACT We have previously shown that outer membrane protein A (OmpA) and type 1 fimbriae are the bacterial determinants involved in Escherichia coli K1 binding to human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. In investigating the role of OmpA in E. coli K1 binding to HBMEC, we showed for the first time that ompA deletion decreased the expression of type 1 fimbriae in E. coli K1. Decreased expression of type 1 fimbriae in the ompA deletion mutant was largely the result of driving the fim promoter toward the type 1 fimbrial phase-OFF orientation. mRNA levels of fimB and fimE were found to be decreased with the OmpA mutant compared to the parent strain. Of interest, the ompA deletion further decreased the abilities of E. coli K1 to bind to and invade HBMEC under the conditions of fixing type 1 fimbria expression in the phase-ON or phase-OFF status. These findings suggest that the decreased ability of the OmpA mutant to interact with HBMEC is not entirely due to its decreased type 1 fimbrial expression and that OmpA and type 1 fimbriae facilitate the interaction of E. coli K1 with HBMEC at least in an additive manner.


Molecular Cancer Research | 2009

Upregulation of MMP-2 by HMGA1 Promotes Transformation in Undifferentiated, Large-Cell Lung Cancer

Joelle Hillion; Lisa Wood; Mita Mukherjee; Raka Bhattacharya; Francescopaolo Di Cello; Jeanne Kowalski; Ossama Elbahloul; Jodi B. Segal; John T. Poirier; Charles M. Rudin; Surajit Dhara; Amy Belton; Biju Joseph; Stanley Zucker; Linda M. S. Resar

Although lung cancer is the leading cause of cancer death worldwide, the precise molecular mechanisms that give rise to lung cancer are incompletely understood. Here, we show that HMGA1 is an important oncogene that drives transformation in undifferentiated, large-cell carcinoma. First, we show that the HMGA1 gene is overexpressed in lung cancer cell lines and primary human lung tumors. Forced overexpression of HMGA1 induces a transformed phenotype with anchorage-independent cell growth in cultured lung cells derived from normal tissue. Conversely, inhibiting HMGA1 expression blocks anchorage-independent cell growth in the H1299 metastatic, undifferentiated, large-cell human lung carcinoma cells. We also show that the matrix metalloproteinase-2 (MMP-2) gene is a downstream target upregulated by HMGA1 in large-cell carcinoma cells. In chromatin immunoprecipitation experiments, HMGA1 binds directly to the MMP-2 promoter in vivo in large-cell lung cancer cells, but not in squamous cell carcinoma cells. In large-cell carcinoma cell lines, there is a significant, positive correlation between HMGA1 and MMP-2 mRNA. Moreover, interfering with MMP-2 expression blocks anchorage-independent cell growth in H1299 large-cell carcinoma cells, indicating that the HMGA1–MMP-2 pathway is required for this transformation phenotype in these cells. Blocking MMP-2 expression also inhibits migration and invasion in the H1299 large-cell carcinoma cells. Our findings suggest an important role for MMP-2 in transformation mediated by HMGA1 in large-cell, undifferentiated lung carcinoma and support the development of strategies to target this pathway in selected tumors. (Mol Cancer Res 2009;7(11):1803–12)


BMC Genomics | 2011

HMGA1 drives stem cell, inflammatory pathway, and cell cycle progression genes during lymphoid tumorigenesis.

Andrew Schuldenfrei; Amy Belton; Jeanne Kowalski; C. Conover Talbot; Francescopaolo Di Cello; Weijie Poh; Hua Ling Tsai; Sandeep N. Shah; Tait Huso; David L. Huso; Linda M. S. Resar

BackgroundAlthough the high mobility group A1 (HMGA1) gene is widely overexpressed in diverse cancers and portends a poor prognosis in some tumors, the molecular mechanisms that mediate its role in transformation have remained elusive. HMGA1 functions as a potent oncogene in cultured cells and induces aggressive lymphoid tumors in transgenic mice. Because HMGA1 chromatin remodeling proteins regulate transcription, HMGA1 is thought to drive malignant transformation by modulating expression of specific genes. Genome-wide studies to define HMGA1 transcriptional networks during tumorigenesis, however, are lacking. To define the HMGA1 transcriptome, we analyzed gene expression profiles in lymphoid cells from HMGA1a transgenic mice at different stages in tumorigenesis.ResultsRNA from lymphoid samples at 2 months (before tumors develop) and 12 months (after tumors are well-established) was screened for differential expression of > 20,000 unique genes by microarray analysis (Affymetrix) using a parametric and nonparametric approach. Differential expression was confirmed by quantitative RT-PCR in a subset of genes. Differentially expressed genes were analyzed for cellular pathways and functions using Ingenuity Pathway Analysis. Early in tumorigenesis, HMGA1 induced inflammatory pathways with NFkappaB identified as a major node. In established tumors, HMGA1 induced pathways involved in cell cycle progression, cell-mediated immune response, and cancer. At both stages in tumorigenesis, HMGA1 induced pathways involved in cellular development, hematopoiesis, and hematologic development. Gene set enrichment analysis showed that stem cell and immature T cell genes are enriched in the established tumors. To determine if these results are relevant to human tumors, we knocked-down HMGA1 in human T-cell leukemia cells and identified a subset of genes dysregulated in both the transgenic and human lymphoid tumors.ConclusionsWe found that HMGA1 induces inflammatory pathways early in lymphoid tumorigenesis and pathways involved in stem cells, cell cycle progression, and cancer in established tumors. HMGA1 also dyregulates genes and pathways involved in stem cells, cellular development and hematopoiesis at both early and late stages of tumorigenesis. These results provide insight into HMGA1 function during tumor development and point to cellular pathways that could serve as therapeutic targets in lymphoid and other human cancers with aberrant HMGA1 expression.


Molecular Cancer | 2013

Cigarette smoke induces epithelial to mesenchymal transition and increases the metastatic ability of breast cancer cells

Francescopaolo Di Cello; V Lynn Flowers; Huili Li; Briana Vecchio-Pagán; Brent Gordon; Kirsten Harbom; James Shin; Robert Beaty; Wei Wang; Cory Brayton; Stephen B. Baylin; Cynthia A. Zahnow

BackgroundRecent epidemiological studies demonstrate that both active and involuntary exposure to tobacco smoke increase the risk of breast cancer. Little is known, however, about the molecular mechanisms by which continuous, long term exposure to tobacco smoke contributes to breast carcinogenesis because most previous studies have focused on short term treatment models. In this work we have set out to investigate the progressive transforming effects of tobacco smoke on non-tumorigenic mammary epithelial cells and breast cancer cells using in vitro and in vivo models of chronic cigarette smoke exposure.ResultsWe show that both non-tumorigenic (MCF 10A, MCF-12A) and tumorigenic (MCF7) breast epithelial cells exposed to cigarette smoke acquire mesenchymal properties such as fibroblastoid morphology, increased anchorage-independent growth, and increased motility and invasiveness. Moreover, transplantation experiments in mice demonstrate that treatment with cigarette smoke extract renders MCF 10A cells more capable to survive and colonize the mammary ducts and MCF7 cells more prone to metastasize from a subcutaneous injection site, independent of cigarette smoke effects on the host and stromal environment. The extent of transformation and the resulting phenotype thus appear to be associated with the differentiation state of the cells at the time of exposure. Analysis by flow cytometry showed that treatment with CSE leads to the emergence of a CD44hi/CD24low population in MCF 10A cells and of CD44+ and CD49f + MCF7 cells, indicating that cigarette smoke causes the emergence of cell populations bearing markers of self-renewing stem-like cells. The phenotypical alterations induced by cigarette smoke are accompanied by numerous changes in gene expression that are associated with epithelial to mesenchymal transition and tumorigenesis.ConclusionsOur results indicate that exposure to cigarette smoke leads to a more aggressive and transformed phenotype in human mammary epithelial cells and that the differentiation state of the cell at the time of exposure may be an important determinant in the phenotype of the final transformed state.

Collaboration


Dive into the Francescopaolo Di Cello's collaboration.

Top Co-Authors

Avatar

Linda M. S. Resar

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Joelle Hillion

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

David L. Huso

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kwang Sik Kim

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Belton

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Surajit Dhara

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Mita Mukherjee

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge