Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francis A. DiGiano is active.

Publication


Featured researches published by Francis A. DiGiano.


Water Research | 2008

Reductions of E. coli, echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand filter

Mark Elliott; Christine E. Stauber; F. Koksal; Francis A. DiGiano; Mark D. Sobsey

Point-of-use (POU) drinking water treatment technology enables those without access to safe water sources to improve the quality of their water by treating it in the home. One of the most promising emerging POU technologies is the biosand filter (BSF), a household-scale, intermittently operated slow sand filter. Over 500,000 people in developing countries currently use the filters to treat their drinking water. However, despite this successful implementation, there has been almost no systematic, process engineering research to substantiate the effectiveness of the BSF or to optimize its design and operation. The major objectives of this research were to: (1) gain an understanding of the hydraulic flow condition within the filter (2) characterize the ability of the BSF to reduce the concentration of enteric bacteria and viruses in water and (3) gain insight into the key parameters of filter operation and their effects on filter performance. Three 6-8 week microbial challenge experiments are reported herein in which local surface water was seeded with E. coli, echovirus type 12 and bacteriophages (MS2 and PRD-1) and charged to the filter daily. Tracer tests indicate that the BSF operated at hydraulic conditions closely resembling plug flow. The performance of the filter in reducing microbial concentrations was highly dependent upon (1) filter ripening over weeks of operation and (2) the daily volume charged to the filter. BSF performance was best when less than one pore volume (18.3-L in the filter design studied) was charged to the filter per day and this has important implications for filter design and operation. Enhanced filter performance due to ripening was generally observed after roughly 30 days. Reductions of E. coli B ranged from 0.3 log10 (50%) to 4 log10, with geometric mean reductions after at least 30 days of operation of 1.9 log10. Echovirus 12 reductions were comparable to those for E. coli B with a range of 1 log10 to >3 log10 and mean reductions after 30 days of 2.1 log10. Bacteriophage reductions were much lower, ranging from zero to 1.3 log10 (95%) with mean reductions of only 0.5 log10 (70%). These data indicate that virus reduction by BSF may differ substantially depending upon the specific viral agent.


Journal of Membrane Science | 2000

Surface energy of experimental and commercial nanofiltration membranes: effects of wetting and natural organic matter fouling

Anna Roudman; Francis A. DiGiano

Abstract Contact angle measurements (captive bubble technique) were used to determine the surface energy of three experimental thin-film composite nanofiltration membranes and a commercial nanofiltration membrane (Hydranautics NTR 7450). The two experimental membranes of practical interest were thin film composites (diblock copolymer on a polysulfone support layer). The two blocks were poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) and poly(1,1-dihydroperfluorooctyl methacrylate) (PFOMA). The concept was to devise a membrane material that takes advantage of the low adhesion of PFOMA to prevent fouling and the hydrophilic nature of PDMAEMA to produce high water permeation rates. Hydranautics NTR 7450 is a sulfonated polysulfone membrane that purportedly lessens fouling because the surface is more hydrophilic. The change in surface energy upon wetting, permeation of water containing natural organic matter (NOM) and chemical cleaning was of interest. Wetting caused reorganization of the experimental block copolymer surface to move more of PDMAEMA block to the membrane–water interface. After permeation of ultrapure water, however, the surface became more hydrophilic. After permeation of NOM containing water, the surface of both experimental and commercial membranes reached about the same surface energy, indicative of adsorption of NOM. The contact angle measurements were used to calculate a negative change in surface free energy for all but the PFOMA membrane; hence, with this exception, the deposition of NOM into a layer adjacent to the membrane surface was spontaneous. Scanning electron micrographs and atomic force micrographs showed that rigorous chemical cleaning failed to remove the NOM. Although the new polymeric materials were not more resistant to NOM fouling than commercial membranes, the surface energy calculations may help in the search for more successful polymers. Systematic study of charge, molecular size and specific functional groups of NOM on membrane fouling warrants further research to understand why similar fouling occurred on very different polymeric materials.


Water Research | 2002

Comparison of bacterial regrowth in distribution systems using free chlorine and chloramine : a statistical study of causative factors

Weidong Zhang; Francis A. DiGiano

Bacterial regrowth was investigated over a 15-month period in distribution systems (DSs) of Durham and Raleigh in North Carolina. These two water utilities were chosen because they are adjacent to one another, have similar service area characteristics, and treat surface waters of similar characteristics with conventional processes (coagulation-sedimentation and dual-media filtration). The finished waters have similar chemical quality and regrowth potential as measured by assimilable organic carbon (AOC). The major difference in treatment is the choice of final disinfectants (chlorine in Durham and chloramine in Raleigh). Ten sampling sites (monthly sampling) were chosen in each system to give wide geographic coverage and correspondingly, a wide range of water residence times. Significant losses were observed in both chlorine and chloramine residual in the DSs that produced bacterial regrowth as measured by heterotrophic plate count (HPC). The frequency distributions for log HPC (133 observations from Durham and 135 observations from Raleigh) were statistically the same in the chlorinated and chloraminated DSs. A correlation analysis indicated that disinfectant residual is the most important factor determining HPC level. However, the resulting R2 value for a non-linear regression model that also included AOC, temperature, and pH as independent variables was less than 0.7. Bacterial regrowth as measured by HPC, is dependent upon a complex interaction of chemical, physical, and operational parameters that may not be captured by such a simple statistical relationship.


Water Research | 2011

Virus attenuation by microbial mechanisms during the idle time of a household slow sand filter

Mark Elliott; Francis A. DiGiano; Mark D. Sobsey

The biosand filter (BSF) is a household slow sand filter that is operated intermittently such that an idle time of typically 18-22 h occurs in between daily charges of water. Virus attenuation during the idle time was investigated over repeated daily filtration cycles to capture the effect of media aging that encompasses processes occurring throughout the filter depth rather than restricted to the schmutzdecke at the media surface. A threshold aging period of about one to two weeks was required before virus attenuation began. The observed rates of MS2 and PRD-1 reduction were first-order and reached maxima of 0.061- and 0.053-log per hr, respectively, over seven-to-ten weeks. Suppression of microbial activity by sodium azide eliminated virus reduction during the idle time thus indicating that the operative media aging process was microbially mediated. The mechanism of virus reduction was not modification of media surfaces by physical/chemical or microbial processes. Instead, it appears that the activity of the microbial community within the filter is responsible. The most likely biological pathways are production of microbial exoproducts such as proteolytic enzymes or grazing of bacteria and higher microorganisms on virus particles. Implications of these findings for BSF design and operation and their relevance to other biological filtration technologies are discussed.


Polymer | 2001

Solubility and diffusivity of sodium chloride in phase-separated block copolymers of poly(2-dimethylaminoethyl methacrylate), poly(1,1'-dihydroperfluorooctyl methacrylate) and poly(1,1,2,2-tetrahydroperfluorooctyl acrylate)

Kazukiyo Nagai; Satoshi Tanaka; Tsutomu Nakagawa; Michelle E. Arnold; Benny D. Freeman; Denis Leroux; Douglas E. Betts; Joseph M. DeSimone; Francis A. DiGiano

Abstract Solubility and diffusivity of sodium chloride were determined in a series of dense films of phase-separated diblock and triblock copolymers composed of poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) and either poly(1,1′-dihydroperfluorooctyl methacrylate (PFOMA) or poly(1,1,2,2-tetrahydroperfluorooctyl acrylate) (PTAN). As the content of hydrophilic PDMAEMA increases in PDMAEMA-b-PFOMA films, total water uptake increases. The salt partition coefficient of these films increases with increasing PDMAEMA content and weight fraction of water in the PDMAEMA domains. In contrast, salt diffusivity is not monotonically correlated with PDMAEMA content and effective hydration. Triblock copolymers exhibit different values of total water uptake, total hydration, salt partition, and diffusion coefficients than those of diblock copolymers (PDMAEMA-b-PFOMA) at the same PDMAEMA concentration. The total water uptake of PFOMA-b-PDMAEMA-b-PFOMA copolymers is lower than that of PDMAEMA-b-PFOMA, while water uptake of PTAN-b-PDMAEMA-b-PTAN films is higher than that of PDMAEMA-b-PFOMA. Salt partition and diffusion coefficients increase monotonically with the amount of freezing water in the hydrophilic domains, suggesting that the state of water in the phase-separated block copolymers is an important factor influencing their salt uptake and transport properties.


Water Environment Research | 1997

Selective separation of europium using polymer-enhanced ultrafiltration

Michael V. Norton; Francis A. DiGiano; Richard T. Hallen

The U.S. Department of Energy (DOE) is actively pursuing new and improved separation techniques for the cleanup of past nuclear defense production sites. Research and production activities at DOEs Hanford Site in Richland, Wash., have created large volumes of waste streams containing hazardous and toxic chemicals along with radioactive materials. Many of these wastes will require processing for segregation into high-level, transuranic, and/or low-level waste for permanent disposal. A process to selectively remove actinides, such as americium, from liquid radioactive waste was investigated for potential use at Hanford and other contaminated DOE sites. The objective of this research was to determine the effectiveness of polymer binding followed by ultrafiltration for removal of europium (Eu), a nonradioactive surrogate for trivalent actinides such as americium. A commercially available polyacrylic acid (PAA) and a Pacific Northwest Laboratory (PNL) synthesized copolymer were tested. Both polymers significantly increased Eu removal. A cation exchange mechanism was implied by examination of the Eu-to-RCO 2 - functional groups that comprise the acrylic acid monomer. The weight ratios of Eu-to-polymer needed to achieve 85% rejection of Eu were 1:6 for PAA and 1:10 for the PNL copolymer. Addition of sodium to the feed solution at a concentration three orders of magnitude greater than Eu did not adversely affect rejection of Eu; this showed the high selectivity of both polymers for Eu. Polymer binding of metals followed by ultrafiltration also has potential applications for selective separation of metals from various industrial process streams. The formation of metal hydroxide precipitates is also a possibility unless pH is controlled; these could be separated as well by ultrafiltration but defeat the intent of polymer addition. For the polymers tested, pH had to be above the pK a (4.25) of the ionizing functional groups but below a pH of 6 where precipitation may interfere.


Water Research | 1988

Determination of microbial kinetic coefficients through measurement of initial rates by radiochemical techniques

Gerald E. Speitel; Francis A. DiGiano

Abstract New techniques were developed for the measurement of Monod kinetic coefficients, the microbial yield coefficient and the endogenous decay coefficient. Kinetic coefficients and the microbial yield coefficient were determined through measurements of initial rates in short duration batch experiments using a radiolabeled substrate (phenol). The experimental data were described well by the Monod model. A first order model fits the endogenous decay of radiolabeled cells. The microbial kinetic technique developed in this research may increase the attractiveness of batch experiments because the approach is faster and easier than chemostat studies. However, a detailed comparison between radiochemical batch and chemostat methods is needed to fully assess the utility of the new technique.


International Journal of Environmental Research and Public Health | 2015

Investigation of E. coli and Virus Reductions Using Replicate, Bench-Scale Biosand Filter Columns and Two Filter Media.

Mark Elliott; Christine E. Stauber; Francis A. DiGiano; Anna M. Fabiszewski de Aceituno; Mark D. Sobsey

The biosand filter (BSF) is an intermittently operated, household-scale slow sand filter for which little data are available on the effect of sand composition on treatment performance. Therefore, bench-scale columns were prepared according to the then-current (2006–2007) guidance on BSF design and run in parallel to conduct two microbial challenge experiments of eight-week duration. Triplicate columns were loaded with Accusand silica or crushed granite to compare virus and E. coli reduction performance. Bench-scale experiments provided confirmation that increased schmutzdecke growth, as indicated by decline in filtration rate, is the primary factor causing increased E. coli reductions of up to 5-log10. However, reductions of challenge viruses improved only modestly with increased schmutzdecke growth. Filter media type (Accusand silica vs. crushed granite) did not influence reduction of E. coli bacteria. The granite media without backwashing yielded superior virus reductions when compared to Accusand. However, for columns in which the granite media was first backwashed (to yield a more consistent distribution of grains and remove the finest size fraction), virus reductions were not significantly greater than in columns with Accusand media. It was postulated that a decline in surface area with backwashing decreased the sites and surface area available for virus sorption and/or biofilm growth and thus decreased the extent of virus reduction. Additionally, backwashing caused preferential flow paths and deviation from plug flow; backwashing is not part of standard BSF field preparation and is not recommended for BSF column studies. Overall, virus reductions were modest and did not meet the 5- or 3-log10 World Health Organization performance targets.


Environmental Engineering Science | 2002

Novel Block Copolymers as Nanofiltration Materials

Francis A. DiGiano; Anna Roudman; Michelle E. Arnold; Benny D. Freeman

The overarching goal of this research was to forge a link between materials science and engineering that may eventually lead to development of new membranes with decreased fouling tendency. Polymer structure influences water transport rates, solute partitioning, and fouling resistance. This article presents the results of testing the first generation of a novel class of nonporous block copolymers for use in nanofiltration (NF) membranes. The block copolymers comprised low surface energy fluoropolymers and highly hydrophilic hydrocarbon-based polymers. The very low surface energy of the fluoropolymer block was intended to resist adhesion of natural organic matter (NOM), a common foulant in drinking water applications of nanofiltration technology. The hydrophilic block was intended to provide channels for water permeation. Thin-film composite membrane tests with a coagulated, settled, and cartridge-filtered drinking water sample showed that the experimental membrane produced comparable water flux to a comme...


Environmental Science & Technology | 1986

Enhancement of N-nitrosamine formation on granular-activated carbon from N-methylaniline and nitrite.

Andrea M. Dietrich; Daniel L. Gallagher; Patricia M. DeRosa; David S. Millington; Francis A. DiGiano

Sterile aqueous N-methylaniline solutions were allowed to equilibrate at various nitrite, F-400 granular-activated carbon, and pH levels for 1 week. The aqueous and activated carbon phases were extracted and analyzed for nitrosamines relative to an added internal standard. Selected ion monitoring GC/MS, utilizing continuous monitoring of the NO/sup +/ ion (m/z 29.9980) characteristic of nitrosamines, at medium resolution (R = 2500-3000) was applied to quantitatively measure nitrosamines at picograms per microliter concentrations. This method selected for nitrosamine products only and eliminated interferences from non-nitrosamine reaction products. Results indicate that the pressure of granular-activated carbon significantly enhanced the formation of nitrosamine from N-methyl-aniline (F = 145, P< 0.0001). The amount of N-nitrosomethylaniline formed in the presence of activated carbon was 75 times more than that formed in the absence of activated carbon under the same nitrite, pH, and precursor amine conditions. High nitrite concentrations and loss pH values significantly increased the conversion of secondary amine to nitrosamine. 25 references, 4 figures, 4 tables.

Collaboration


Dive into the Francis A. DiGiano's collaboration.

Top Co-Authors

Avatar

Weidong Zhang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Cass T. Miller

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Gerald E. Speitel

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Benny D. Freeman

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Donald E. Francisco

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark D. Sobsey

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Michelle E. Arnold

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge