Francis Mumbowa
Makerere University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francis Mumbowa.
American Journal of Respiratory and Critical Care Medicine | 2013
Edward C. Jones-López; Olive Namugga; Francis Mumbowa; Martin Ssebidandi; Olive Mbabazi; Stephanie Moine; Gerald Mboowa; Matthew P. Fox; Nancy Reilly; Irene Ayakaka; Soyeon Kim; Alphonse Okwera; Moses Joloba; Kevin P. Fennelly
RATIONALE Airborne transmission of Mycobacterium tuberculosis results from incompletely characterized host, bacterial, and environmental factors. Sputum smear microscopy is associated with considerable variability in transmission. OBJECTIVES To evaluate the use of cough-generated aerosols of M. tuberculosis to predict recent transmission. METHODS Patients with pulmonary tuberculosis (TB) underwent a standard evaluation and collection of cough aerosol cultures of M. tuberculosis. We assessed household contacts for new M. tuberculosis infection. We used multivariable logistic regression analysis with cluster adjustment to analyze predictors of new infection. MEASUREMENTS AND MAIN RESULTS From May 2009 to January 2011, we enrolled 96 sputum culture-positive index TB cases and their 442 contacts. Only 43 (45%) patients with TB yielded M. tuberculosis in aerosols. Contacts of patients with TB who produced high aerosols (≥10 CFU) were more likely to have a new infection compared with contacts from low-aerosol (1-9 CFU) and aerosol-negative cases (69%, 25%, and 30%, respectively; P = 0.009). A high-aerosol patient with TB was the only predictor of new M. tuberculosis infection in unadjusted (odds ratio, 5.18; 95% confidence interval, 1.52-17.61) and adjusted analyses (odds ratio, 4.81; 95% confidence interval, 1.20-19.23). Contacts of patients with TB with no aerosols versus low and high aerosols had differential tuberculin skin test and interferon-γ release assay responses. CONCLUSIONS Cough aerosols of M. tuberculosis are produced by a minority of patients with TB but predict transmission better than sputum smear microscopy or culture. Cough aerosols may help identify the most infectious patients with TB and thus improve the cost-effectiveness of TB control programs.
Annals of Clinical Microbiology and Antimicrobials | 2007
Hamidou Traore; Sam Ogwang; Kim Mallard; Moses Joloba; Francis Mumbowa; Kalpana Narayan; Susan Kayes; Edward C. Jones-López; Peter G. Smith; Jerrold J. Ellner; Roy D. Mugerwa; Kathleen D. Eisenach; Ruth McNerney
BackgroundResistance to anti-tuberculosis drugs is a serious public health problem. Multi-drug resistant tuberculosis (MDR-TB), defined as resistance to at least rifampicin and isoniazid, has been reported in all regions of the world. Current phenotypic methods of assessing drug susceptibility of M. tuberculosis are slow. Rapid molecular methods to detect resistance to rifampicin have been developed but they are not affordable in some high prevalence countries such as those in sub Saharan Africa. A simple multi-well plate assay using mycobacteriophage D29 has been developed to test M. tuberculosis isolates for resistance to rifampicin. The purpose of this study was to investigate the performance of this technology in Kampala, Uganda.MethodsIn a blinded study 149 M. tuberculosis isolates were tested for resistance to rifampicin by the phage assay and results compared to those from routine phenotypic testing in BACTEC 460. Three concentrations of drug were used 2, 4 and 10 μg/ml. Isolates found resistant by either assay were subjected to sequence analysis of a 81 bp fragment of the rpoB gene to identify mutations predictive of resistance. Four isolates with discrepant phage and BACTEC results were tested in a second phenotypic assay to determine minimal inhibitory concentrations.ResultsInitial analysis suggested a sensitivity and specificity of 100% and 96.5% respectively for the phage assay used at 4 and 10 μg/ml when compared to the BACTEC 460. However, further analysis revealed 4 false negative results from the BACTEC 460 and the phage assay proved the more sensitive and specific of the two tests. Of the 39 isolates found resistant by the phage assay 38 (97.4%) were found to have mutations predictive of resistance in the 81 bp region of the rpoB gene. When used at 2 μg/ml false resistant results were observed from the phage assay. The cost of reagents for testing each isolate was estimated to be 1.3US
PLOS Medicine | 2011
Edward C. Jones-López; Irene Ayakaka; Jonathan Levin; Nancy Reilly; Francis Mumbowa; Scott Dryden-Peterson; Grace Nyakoojo; Kevin P. Fennelly; Beth Temple; Susan Nakubulwa; Moses Joloba; Alphonse Okwera; Kathleen D. Eisenach; Ruth McNerney; Alison M. Elliott; Jerrold J. Ellner; Peter G. Smith; Roy D. Mugerwa
when testing a batch of 20 isolates on a single 96 well plate. Results were obtained in 48 hours.ConclusionThe phage assay can be used for screening of isolates for resistance to rifampicin, with high sensitivity and specificity in Uganda. The test may be useful in poorly resourced laboratories as a rapid screen to differentiate between rifampicin susceptible and potential MDR-TB cases.
Antimicrobial Agents and Chemotherapy | 2014
Jong Seok Lee; Derek T. Armstrong; Willy Ssengooba; Jeong Ae Park; Yeuni Yu; Francis Mumbowa; Carolyn Namaganda; Gerald Mboowa; Germine Nakayita; Sandra Armakovitch; Gina Chien; Sang-Nae Cho; Laura E. Via; Clifton E. Barry; Jerrold J. Ellner; David Alland; Susan E. Dorman; Moses Joloba
Prospective evaluation of the effectiveness of the WHO-recommended standardized retreatment regimen for tuberculosis by Edward Jones-López and colleagues reveals an unacceptable proportion of unsuccessful outcomes.
PLOS ONE | 2013
Taane G. Clark; Kim Mallard; Francesc Coll; Mark D. Preston; Samuel A. Assefa; David Harris; Sam Ogwang; Francis Mumbowa; Bruce Kirenga; Denise M. O’Sullivan; Alphonse Okwera; Kathleen D. Eisenach; Moses Joloba; Stephen D. Bentley; Jerrold J. Ellner; Julian Parkhill; Edward C. Jones-López; Ruth McNerney
ABSTRACT For Mycobacterium tuberculosis, phenotypic methods for drug susceptibility testing of second-line drugs are poorly standardized and technically challenging. The Sensititre MYCOTB MIC plate (MYCOTB) is a microtiter plate containing lyophilized antibiotics and configured for determination of MICs to first- and second-line antituberculosis drugs. To evaluate the performance of MYCOTB for M. tuberculosis drug susceptibility testing using the Middlebrook 7H10 agar proportion method (APM) as the comparator, we conducted a two-site study using archived M. tuberculosis isolates from Uganda and the Republic of Korea. Thawed isolates were subcultured, and dilutions were inoculated into MYCOTB wells and onto 7H10 agar. MYCOTB results were read at days 7, 10, 14, and 21; APM results were read at 21 days. A total of 222 isolates provided results on both platforms. By APM, 106/222 (47.7%) of isolates were resistant to at least isoniazid and rifampin. Agreement between MYCOTB and APM with respect to susceptibility or resistance was ≥92% for 7 of 12 drugs when a strict definition was used and ≥96% for 10 of 12 drugs when agreement was defined by allowing a ± one-well range of dilutions around the APM critical concentration. For ethambutol, agreement was 80% to 81%. For moxifloxacin, agreement was 83% to 85%; incorporating existing DNA sequencing information for discrepant analysis raised agreement to 91% to 96%. For MYCOTB, the median time to plate interpretation was 10 days and interreader agreement was ≥95% for all drugs. MYCOTB provided reliable results for M. tuberculosis susceptibility testing of first- and second-line drugs except ethambutol, and results were available sooner than those determined by APM.
BMC Infectious Diseases | 2013
Benon B. Asiimwe; Godwins B Bagyenzi; Willy Ssengooba; Francis Mumbowa; Gerald Mboowa; Anne Wajja; Harriet Mayanja-Kiiza; Philippa Musoke; Eric Wobudeya; Gunilla Källenius; Moses Joloba
Background Understanding the emergence and spread of multidrug-resistant tuberculosis (MDR-TB) is crucial for its control. MDR-TB in previously treated patients is generally attributed to the selection of drug resistant mutants during inadequate therapy rather than transmission of a resistant strain. Traditional genotyping methods are not sufficient to distinguish strains in populations with a high burden of tuberculosis and it has previously been difficult to assess the degree of transmission in these settings. We have used whole genome analysis to investigate M. tuberculosis strains isolated from treatment experienced patients with MDR-TB in Uganda over a period of four years. Methods and Findings We used high throughput genome sequencing technology to investigate small polymorphisms and large deletions in 51 Mycobacterium tuberculosis samples from 41 treatment-experienced TB patients attending a TB referral and treatment clinic in Kampala. This was a convenience sample representing 69% of MDR-TB cases identified over the four year period. Low polymorphism was observed in longitudinal samples from individual patients (2-15 SNPs). Clusters of samples with less than 50 SNPs variation were examined. Three clusters comprising a total of 8 patients were found with almost identical genetic profiles, including mutations predictive for resistance to rifampicin and isoniazid, suggesting transmission of MDR-TB. Two patients with previous drug susceptible disease were found to have acquired MDR strains, one of which shared its genotype with an isolate from another patient in the cohort. Conclusions Whole genome sequence analysis identified MDR-TB strains that were shared by more than one patient. The transmission of multidrug-resistant disease in this cohort of retreatment patients emphasises the importance of early detection and need for infection control. Consideration should be given to rapid testing for drug resistance in patients undergoing treatment to monitor the emergence of resistance and permit early intervention to avoid onward transmission.
BMC Research Notes | 2012
Christopher Muchwa; Joseph Akol; Alfred Etwom; Karen Morgan; Patrick Orikiriza; Francis Mumbowa; Paul R Odong; David P. Kateete; Kathleen D. Eisenach; Moses Joloba
BackgroundSmear microscopy, a mainstay of tuberculosis (TB) diagnosis in developing countries, cannot differentiate M. tuberculosis complex from NTM infection, while pulmonary TB shares clinical signs with NTM disease, causing clinical and diagnostic dilemmas. This study used molecular assays to identify species and assess genotypic diversity of non-tuberculous mycobacteria (NTM) isolates from children investigated for pulmonary tuberculosis at a demographic surveillance site in rural eastern Uganda.MethodsChildren were investigated for pulmonary tuberculosis as part of a TB vaccine surveillance program (2009–2011). Two cohorts of 2500 BCG vaccinated infants and 7000 adolescents (12–18 years) were recruited and followed up for one to two years to determine incidence of tuberculosis. Induced sputum and gastric aspirates were processed by the standard N-acetyl L-cysteine (NALC)-NaOH method. Sediments were cultured in the automated MGIT (Becton Dickson) liquid culture system and incubated at 37°C for at least six weeks. Capilia TB assay was used to classify mycobacteria into MTC and NTM. The GenoType CM/AS assays were performed to identify species while Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR genotyping was used to assess genetic diversity of the strains within each species.ResultsAmong 2859 infants and 2988 adolescents screened, the numbers of TB suspects were 710 and 1490 infants and adolescents respectively. The prevalence of NTM in infant suspects was 3.7% (26/710) (95% CI 2.5–5.2) while that in adolescent suspects was 4.6% (69/1490) (95% CI 3.6–5.8). On culture, 127 isolates were obtained, 103 of which were confirmed as mycobacteria comprising of 95 NTM and eight M. tuberculosis complex. The Genotype CM/AS assay identified 63 of the 95 NTM isolates while 32 remained un-identified. The identified NTM species were M. fortuitum (40 isolates, 63.5%), M. szulgai (9 isolates, 14.3%), M. gordonae (6 isolates, 9.5%), M. intracellulare (3 isolates, 4.7%), M. scrofulaceum (2 isolates, 3.2%), M. lentiflavum (2 isolates, 3.2%), and M. peregrinum (1 isolate, 1.6%). Genotyping did not reveal any clustering in M. intracellulare, M. gordonae and M. szulgai species. M. fortuitum, on the other hand, had two clusters, one with three isolates of M. fortuitum 1 and the other with two isolates of M. fortuitum 2 subspecies. The remaining 35 of the 40 isolates of M. fortuitum had unique fingerprint patterns.ConclusionM. fortuitum is the most common cause of infection by NTM among Infants and adolescents in rural Uganda. There is a varied number of species and genotypes, with minimal clustering within species, suggesting ubiquitous sources of infection to individuals in this community.
Tuberculosis Research and Treatment | 2012
Willy Ssengooba; David P. Kateete; Anne Wajja; Eric Bugumirwa; Gerald Mboowa; Carolyn Namaganda; Germine Nakayita; Maria Nassolo; Francis Mumbowa; Benon B. Asiimwe; James Waako; Suzanne Verver; Philippa Musoke; Harriet Mayanja-Kizza; Moses Joloba
BackgroundCapilia TB is a simple immunochromatographic assay based on the detection of MPB64 antigen specifically secreted by the Mycobacterium tuberculosis complex (MTC). Capilia TB was evaluated for rapid identification of MTC from BACTEC MGIT 960 and BACTEC 9120 systems in Kampala, Uganda. Since most studies have mainly dealt with respiratory samples, the performance of Capilia TB on blood culture samples was also evaluated.MethodsOne thousand samples from pulmonary and disseminated tuberculosis (TB) suspects admitted to the JCRC clinic and the TB wards at Old Mulago hospital in Kampala, Uganda, were cultured in automated BACTEC MGIT 960 and BACTEC 9120 blood culture systems. BACTEC-positive samples were screened for purity by sub-culturing on blood agar plates. Two hundred and fifty three (253) samples with Acid fast bacilli (AFB, 174 BACTEC MGIT 960 and 79 BACTEC 9120 blood cultures) were analyzed for presence of MTC using Capilia TB and in-house PCR assays.ResultsThe overall Sensitivity, Specificity, Positive and Negative Predictive values, and Kappa statistic for Capilia TB assay for identification of MTC were 98.4%, 97.6%, 97.7%, 98.4% and 0.96, respectively. Initially, the performance of in-house PCR on BACTEC 9120 blood cultures was poor (Sensitivity, Specificity, PPV, NPV and Kappa statistic of 100%, 29.3%,7%, 100% and 0.04, respectively) but improved upon sub-culturing on solid medium (Middlebrook 7H10) to 100%, 95.6%, 98.2%, 100% and 0.98, respectively. In contrast, the Sensitivity and Specificity of Capilia TB assay was 98.4% and 97.9%, respectively, both with BACTEC blood cultures and Middlebrook 7H10 cultured samples, revealing that Capilia was better than in-house PCR for identification of MTC in blood cultures. Additionally, Capilia TB was cheaper than in-house PCR for individual samples (
PLOS ONE | 2014
Bruce Kirenga; Jonathan Levin; Irene Ayakaka; William Worodria; Nancy Reilly; Francis Mumbowa; Helen Nabanjja; Grace Nyakoojo; Kevin P. Fennelly; Susan Nakubulwa; Moses Joloba; Alphonse Okwera; Kathleen D. Eisenach; Ruth McNerney; Alison M. Elliott; Roy D. Mugerwa; Peter G. Smith; Jerrold J. Ellner; Edward C. Jones-López
2.03 vs.
Journal of Laboratory Physicians | 2012
Sarman Singh; Parveen Kumar; Shreya Sharma; Francis Mumbowa; Anandi Martin; Nicolas Durier
12.59, respectively), and was easier to perform with a shorter turnaround time (20 min vs. 480 min, respectively).ConclusionCapilia TB assay is faster and cheaper than in-house PCR for rapid identification of MTC from BACTEC MGIT 960 and BACTEC 9120 culture systems in real-time testing of AFB positive cultures.