Francis O'Neill
Queen's University Belfast
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francis O'Neill.
Molecular Psychiatry | 2009
M Y M Ng; Douglas F. Levinson; Stephen V. Faraone; Brian K. Suarez; Lynn E. DeLisi; Tadao Arinami; Brien P. Riley; Tiina Paunio; Ann E. Pulver; Irmansyah; Peter Holmans; Michael A. Escamilla; Dieter B. Wildenauer; Nigel Melville Williams; Claudine Laurent; Bryan J. Mowry; Linda M. Brzustowicz; M. Maziade; Pamela Sklar; David L. Garver; Gonçalo R. Abecasis; Bernard Lerer; M D Fallin; H M D Gurling; Pablo V. Gejman; Eva Lindholm; Hans W. Moises; William Byerley; Ellen M. Wijsman; Paola Forabosco
A genome scan meta-a nalysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (PSR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142–168 Mb) and 2q (103–134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119–152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for ‘aggregate’ genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16–33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies.
Molecular Psychiatry | 1997
Richard E. Straub; Charles J. MacLean; Francis O'Neill; Dominic M. Walsh; Kenneth S. Kendler
In our genome scan for schizophrenia genes in 265 Irish pedigrees, marker D5S818 in 5q22 produced the second best result of the first 223 markers tested (P = 0.002). We then tested an additional 13 markers and the evidence suggests the presence of a vulnerability locus for schizophrenia in region 5q22–31. This region appears to be distinct from those chromosome 5 regions studied in two prior reports,1,2 but the same as that producing positive results in the report by Wildenauer and colleagues3 found elsewhere in this issue. The largest pairwise heterogeneity LOD (H-LOD) score was found with marker D5S393 (max 3.04, P = 0.0005), assuming a narrow phenotypic category, and a genetic model with intermediate heterozygotic liability. In marked contrast to the H-LOD scores from our sample with markers from the regions of interest on chromosomes 6p4 and 8p, expanding the disease definition to include schizophrenia spectrum or nonspectrum disorders produced substantially smaller scores, with a number of markers failing to yield positive values at any recombination fraction. Using multipoint H-LODS, the strongest evidence for linkage occurs under the narrow phenotypic definition and recessive genetic model, with a peak at marker D5S804 (max 3.35, P = 0.0002). Multipoint non-parametric linkage analysis produced a peak in the same location (max z = 2.84, P = 0.002) with the narrow phenotypic definition. This putative vulnerability locus appears to be segregating in 10–25% of the families studied, but this estimate is tentative. Comparison of individual family multipoint H-LOD scores at the regions of interest on chromosomes 6p, 8p and 5q showed that only a minority of families yield high lod scores in two or three regions.
Molecular Psychiatry | 2010
Brien P. Riley; Brion S. Maher; Tim B. Bigdeli; Brandon Wormley; G.O. McMichael; Ayman H. Fanous; Vladimir I. Vladimirov; Francis O'Neill; Dominic M. Walsh; Kenneth S. Kendler
A recent genome-wide association study reported association between schizophrenia and the ZNF804A gene on chromosome 2q32.1. We attempted to replicate these findings in our Irish Case–Control Study of Schizophrenia (ICCSS) sample (N=1021 cases, 626 controls). Following consultation with the original investigators, we genotyped three of the most promising single-nucleotide polymorphisms (SNPs) from the Cardiff study. We replicate association with rs1344706 (trend test one-tailed P=0.0113 with the previously associated A allele) in ZNF804A. We detect no evidence of association with rs6490121 in NOS1 (one-tailed P=0.21), and only a trend with rs9922369 in RGRIP1L (one-tailed P=0.0515). On the basis of these results, we completed genotyping of 11 additional linkage disequilibrium-tagging SNPs in ZNF804A. Of 12 SNPs genotyped, 11 pass quality control criteria and 4 are nominally associated, with our most significant evidence of association at rs7597593 (P=0.0013) followed by rs1344706. We observe no evidence of differential association in ZNF804A on the basis of family history or sex of case. The associated SNP rs1344706 lies in ∼30 bp of conserved mammalian sequence, and the associated A allele is predicted to maintain binding sites for the brain-expressed transcription factors MYT1l and POU3F1/OCT-6. In controls, expression is significantly increased from the A allele of rs1344706 compared with the C allele. Expression is increased in schizophrenic cases compared with controls, but this difference does not achieve statistical significance. This study replicates the original reported association of ZNF804A with schizophrenia and suggests that there is a consistent link between the A allele of rs1344706, increased expression of ZNF804A and risk for schizophrenia.
BMJ | 2012
Mike Crawford; Helen Killaspy; Thomas R. E. Barnes; Barbara Barrett; Sarah Byford; Katie Clayton; John Dinsmore; Siobhan Floyd; Angela Hoadley; Tony Johnson; Eleftheria Kalaitzaki; Michael King; Baptiste Leurent; Anna Maratos; Francis O'Neill; David Osborn; Sue Patterson; Tony Soteriou; Peter Tyrer; Diane Waller
Objectives To evaluate the clinical effectiveness of group art therapy for people with schizophrenia and to test whether any benefits exceed those of an active control treatment. Design Three arm, rater blinded, pragmatic, randomised controlled trial. Setting Secondary care services across 15 sites in the United Kingdom. Participants 417 people aged 18 or over, who had a diagnosis of schizophrenia and provided written informed consent to take part in the study. Interventions Participants, stratified by site, were randomised to 12 months of weekly group art therapy plus standard care, 12 months of weekly activity groups plus standard care, or standard care alone. Art therapy and activity groups had up to eight members and lasted for 90 minutes. In art therapy, members were given access to a range of art materials and encouraged to use these to express themselves freely. Members of activity groups were offered various activities that did not involve use of art or craft materials and were encouraged to collectively select those they wanted to pursue. Main outcome measures The primary outcomes were global functioning, measured using the global assessment of functioning scale, and mental health symptoms, measured using the positive and negative syndrome scale, 24 months after randomisation. Main secondary outcomes were levels of group attendance, social functioning, and satisfaction with care at 12 and 24 months. Results 417 participants were assigned to either art therapy (n=140), activity groups (n=140), or standard care alone (n=137). Primary outcomes between the three study arms did not differ. The adjusted mean difference between art therapy and standard care at 24 months on the global assessment of functioning scale was −0.9 (95% confidence interval −3.8 to 2.1), and on the positive and negative syndrome scale was 0.7 (−3.1 to 4.6). Secondary outcomes did not differ between those referred to art therapy or those referred to standard care at 12 or 24 months. Conclusions Referring people with established schizophrenia to group art therapy as delivered in this trial did not improve global functioning, mental health, or other health related outcomes. Trial registration Current Controlled Trials ISRCTN46150447.
American Journal of Medical Genetics | 1998
Richard E. Straub; Charles J. MacLean; R. Martin; Yunlong Ma; M. V. Myakishev; C. Harris-Kerr; B. T. Webb; Francis O'Neill; Dermot Walsh; Kenneth S. Kendler
In our genomic scan of 265 Irish families with schizophrenia, we have thus far generated modest evidence for the presence of vulnerability genes in three chromosomal regions, i.e., 5q21-q31, 6p24-p22, and 8p22-p21. Outside of those regions, of all markers tested to date, D10S674 produced one of the highest pairwise heterogeneity lod (H-LOD) scores, 3.2 (P = 0.0004), when initially tested on a subset of 88 families. We then tested a total of 12 markers across a region of 32 centimorgans in region 10p15-p11 of all 265 families. The strongest evidence for linkage occurred assuming an intermediate phenotypic definition, and a recessive genetic model. The largest pairwise H-LOD score was found with marker D10S2443 (maximum 1.95, P = 0.005). Using multipoint H-LODs, we found a broad peak (maximum 1.91, P = 0.006) extending over the 11 centimorgans from marker D10S674 to marker D10S1426. Multipoint nonparametric linkage analysis produced a much broader peak, but with the maximum in the same location near D10S2443 (maximum z = 1.88, P = 0.03). Based on estimates from the multipoint analysis, this putative vulnerability locus appears to be segregating in 5-15% of the families studied, but this estimate should be viewed with caution. When evaluated in the context of our genome scan results, the evidence suggests the possibility of a fourth vulnerability locus for schizophrenia in these Irish families, in region 10p15-p11.
Molecular Psychiatry | 2002
Richard E. Straub; Charles J. MacLean; Yunlong Ma; Bradley T. Webb; Maxim V. Myakishev; Carole Harris-Kerr; Brandon Wormley; Hannah Sadek; B Kadambi; Francis O'Neill; Dominic M. Walsh; Kenneth S. Kendler
From our linkage study of Irish families with a high density of schizophrenia, we have previously reported evidence for susceptibility genes in regions 5q21–31, 6p24–21, 8p22–21, and 10p15–p11. In this report, we describe the cumulative results from independent genome scans of three a priori random subsets of 90 families each, and from multipoint analysis of all 270 families in ten regions. Of these ten regions, three (13q32, 18p11–q11, and 18q22–23) did not generate scores above the empirical baseline pairwise scan results, and one (6q13–26) generated a weak signal. Six other regions produced more positive pairwise and multipoint results. They showed the following maximum multipoint H-LOD (heterogeneity LOD) and NPL scores: 2p14–13: 0.89 (P = 0.06) and 2.08 (P = 0.02), 4q24–32: 1.84 (P = 0.007) and 1.67 (P = 0.03), 5q21–31: 2.88 (P= 0.0007), and 2.65 (P = 0.002), 6p25–24: 2.13 (P = 0.005) and 3.59 (P = 0.0005), 6p23: 2.42 (P = 0.001) and 3.07 (P = 0.001), 8p22–21: 1.57 (P = 0.01) and 2.56 (P = 0.005), 10p15–11: 2.04 (P = 0.005) and 1.78 (P = 0.03). The degree of ‘internal replication’ across subsets differed, with 5q, 6p, and 8p being most consistent and 2p and 10p being least consistent. On 6p, the data suggested the presence of two susceptibility genes, in 6p25–24 and 6p23–22. Very few families were positive on more than one region, and little correlation between regions was evident, suggesting substantial locus heterogeneity. The levels of statistical significance were modest, as expected from loci contributing to complex traits. However, our internal replications, when considered along with the positive results obtained in multiple other samples, suggests that most of these six regions are likely to contain genes that influence liability to schizophrenia.
Molecular Psychiatry | 2003
E J C G van den Oord; Patrick F. Sullivan; Y. Jiang; Dominic M. Walsh; Francis O'Neill; Kenneth S. Kendler; Brien P. Riley
A recent report showed significant associations between several SNPs in a previously unknown EST cluster with schizophrenia.1 The cluster was identified as the human dystrobrevin binding protein 1 gene (DTNBP1) by sequence database comparisons and homology with mouse DTNBP1.2 However, the linkage disequilibrium (LD) among the SNPs in DTNBP1 as well as the pattern of significant SNP–schizophrenia association was complex. This raised several questions such as the number of susceptibility alleles that may be involved and the size of the region where the actual disease mutation(s) could be located. To address these questions, we performed different single-marker tests on the 12 previously studied and 2 new SNPs in DTNBP1 that were re-scored using an improved procedure, and performed a variety of haplotype analyses. The sample consisted of 268 Irish multiplex families selected for high density of schizophrenia. Results suggested a simple structure where the LD in the target region could be explained by 6 haplotypes that together accounted for 96% of haplotype diversity in the whole sample. From these six, a single high-risk haplotype was identified that showed a significant association with schizophrenia and explained the pattern of significant findings in the analyses with individual markers. This haplotype was 30 kb long, had a large effect, could be measured with two tag SNPs only, had a frequency of 6% in our sample, seemed to be of relatively recent origin in evolutionary terms, and was equally distributed over Ireland. Implications of these findings for follow-up and replication studies are discussed.
Molecular Psychiatry | 2004
Bradley T. Webb; Benjamin M. Neale; R. Ribble; Francis O'Neill; Dermot Walsh; Brien P. Riley; Kenneth S. Kendler
The neuregulin-1 gene (NRG1) at chromosome 8p21–22 has been implicated as a schizophrenia susceptibility gene in Icelandic, Scottish, Irish and mixed UK populations. The shared ancestry between these populations led us to investigate the NRG1 polymorphisms and appropriate marker haplotypes for linkage and/or association to schizophrenia in the Irish study of high-density schizophrenia families (ISHDSF). Neither single-point nor multi-point linkage analysis of NRG1 markers gave evidence for linkage independent of our pre-existing findings telomeric on 8p. Analysis of linkage disequilibrium (LD) across the 252 kb interval encompassing the 7 marker core Icelandic/Scottish NRG1 haplotype revealed two separate regions of modest LD, comprising markers SNP8NRG255133, SNP8NRG249130 and SNP8NRG243177 (telomeric) and microsatellites 478B14-428, 420M9-1395, D8S1810 and 420M9-116I12 (centromeric). From single marker analysis by TRANSMIT and FBAT we found no evidence for association with schizophrenia for any marker. Haplotype analysis for the three SNPs in LD region 1 and, separately, the four microsatellites in LD region 2 (analyzed in overlapping 2-marker windows), showed no evidence for overtransmission of specific haplotypes to affected individuals. We therefore conclude that if NRG1 does contain susceptibility alleles for schizophrenia, they impact quite weakly on risk in the ISHDSF.
Molecular Psychiatry | 2014
Elliott Rees; George Kirov; Alan R. Sanders; James Tynan Rhys Walters; Jianxin Shi; Jin P. Szatkiewicz; Colm O'Dushlaine; Alexander Richards; Elaine K. Green; Ian Richard Jones; Geraint Davies; Sophie E. Legge; Jennifer L. Moran; Carlos N. Pato; Michele T. Pato; Giulio Genovese; Douglas F. Levinson; Jubao Duan; Winton Moy; Harald H H Göring; Derek W. Morris; Paul Cormican; Kenneth S. Kendler; Francis O'Neill; Brien P. Riley; Michael Gill; Aiden Corvin; Nicholas John Craddock; Pamela Sklar; Christina M. Hultman
A number of large, rare copy number variants (CNVs) are deleterious for neurodevelopmental disorders, but large, rare, protective CNVs have not been reported for such phenotypes. Here we show in a CNV analysis of 47 005 individuals, the largest CNV analysis of schizophrenia to date, that large duplications (1.5–3.0 Mb) at 22q11.2—the reciprocal of the well-known, risk-inducing deletion of this locus—are substantially less common in schizophrenia cases than in the general population (0.014% vs 0.085%, OR=0.17, P=0.00086). 22q11.2 duplications represent the first putative protective mutation for schizophrenia.
Molecular Psychiatry | 2007
Ayman H. Fanous; Michael C. Neale; Charles O. Gardner; Bradley T. Webb; Richard E. Straub; Francis O'Neill; Dermot Walsh; Brien P. Riley; Kenneth S. Kendler
Prior family and adoption studies have suggested a genetic relationship between schizophrenia and schizotypy. However, this has never been verified using linkage methods. We therefore attempted to test for a correlation in linkage signals from genome-wide scans of schizophrenia and schizotypy. The Irish study of high-density schizophrenia families comprises 270 families with at least two members with schizophrenia or poor-outcome schizoaffective disorder (n=637). Non-psychotic relatives were assessed using the structured interview for schizotypy (n=746). A 10-cM multipoint, non-parametric, autosomal genome-wide scan of schizophrenia was performed in Merlin. A scan of a quantitative trait comprising ratings of DSM-III-R criteria for schizotypal personality disorder in non-psychotic relatives was also performed. Schizotypy logarithm of the odds (LOD) scores were regressed onto schizophrenia LOD scores at all loci, with adjustment for spatial autocorrelation. To assess empirical significance, this was also carried out using 1000 null scans of schizotypy. The number of jointly linked loci in the real data was compared to distribution of jointly linked loci in the null scans. No markers were suggestively linked to schizotypy based on strict Lander–Kruglyak criteria. Schizotypy LODs predicted schizophrenia LODs above chance expectation genome wide (empirical P=0.04). Two and four loci yielded nonparametric LOD (NPLs) >1.0 and >0.75, respectively, for both schizophrenia and schizotypy (genome-wide empirical P=0.04 and 0.02, respectively). These results suggest that at least a subset of schizophrenia susceptibility genes also affects schizotypy in non-psychotic relatives. Power may therefore be increased in molecular genetic studies of schizophrenia if they incorporate measures of schizotypy in non-psychotic relatives.