Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francis R. Bach is active.

Publication


Featured researches published by Francis R. Bach.


international conference on machine learning | 2009

Online dictionary learning for sparse coding

Julien Mairal; Francis R. Bach; Jean Ponce; Guillermo Sapiro

Sparse coding---that is, modelling data vectors as sparse linear combinations of basis elements---is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on learning the basis set, also called dictionary, to adapt it to specific data, an approach that has recently proven to be very effective for signal reconstruction and classification in the audio and image processing domains. This paper proposes a new online optimization algorithm for dictionary learning, based on stochastic approximations, which scales up gracefully to large datasets with millions of training samples. A proof of convergence is presented, along with experiments with natural images demonstrating that it leads to faster performance and better dictionaries than classical batch algorithms for both small and large datasets.


international conference on machine learning | 2004

Multiple kernel learning, conic duality, and the SMO algorithm

Francis R. Bach; Gert R. G. Lanckriet; Michael I. Jordan

While classical kernel-based classifiers are based on a single kernel, in practice it is often desirable to base classifiers on combinations of multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for the support vector machine (SVM), and showed that the optimization of the coefficients of such a combination reduces to a convex optimization problem known as a quadratically-constrained quadratic program (QCQP). Unfortunately, current convex optimization toolboxes can solve this problem only for a small number of kernels and a small number of data points; moreover, the sequential minimal optimization (SMO) techniques that are essential in large-scale implementations of the SVM cannot be applied because the cost function is non-differentiable. We propose a novel dual formulation of the QCQP as a second-order cone programming problem, and show how to exploit the technique of Moreau-Yosida regularization to yield a formulation to which SMO techniques can be applied. We present experimental results that show that our SMO-based algorithm is significantly more efficient than the general-purpose interior point methods available in current optimization toolboxes.


international conference on computer vision | 2009

Non-local sparse models for image restoration

Julien Mairal; Francis R. Bach; Jean Ponce; Guillermo Sapiro; Andrew Zisserman

We propose in this paper to unify two different approaches to image restoration: On the one hand, learning a basis set (dictionary) adapted to sparse signal descriptions has proven to be very effective in image reconstruction and classification tasks. On the other hand, explicitly exploiting the self-similarities of natural images has led to the successful non-local means approach to image restoration. We propose simultaneous sparse coding as a framework for combining these two approaches in a natural manner. This is achieved by jointly decomposing groups of similar signals on subsets of the learned dictionary. Experimental results in image denoising and demosaicking tasks with synthetic and real noise show that the proposed method outperforms the state of the art, making it possible to effectively restore raw images from digital cameras at a reasonable speed and memory cost.


computer vision and pattern recognition | 2010

Learning mid-level features for recognition

Y-Lan Boureau; Francis R. Bach; Yann LeCun; Jean Ponce

Many successful models for scene or object recognition transform low-level descriptors (such as Gabor filter responses, or SIFT descriptors) into richer representations of intermediate complexity. This process can often be broken down into two steps: (1) a coding step, which performs a pointwise transformation of the descriptors into a representation better adapted to the task, and (2) a pooling step, which summarizes the coded features over larger neighborhoods. Several combinations of coding and pooling schemes have been proposed in the literature. The goal of this paper is threefold. We seek to establish the relative importance of each step of mid-level feature extraction through a comprehensive cross evaluation of several types of coding modules (hard and soft vector quantization, sparse coding) and pooling schemes (by taking the average, or the maximum), which obtains state-of-the-art performance or better on several recognition benchmarks. We show how to improve the best performing coding scheme by learning a supervised discriminative dictionary for sparse coding. We provide theoretical and empirical insight into the remarkable performance of max pooling. By teasing apart components shared by modern mid-level feature extractors, our approach aims to facilitate the design of better recognition architectures.


computer vision and pattern recognition | 2008

Discriminative learned dictionaries for local image analysis

Julien Mairal; Francis R. Bach; Jean Ponce; Guillermo Sapiro; Andrew Zisserman

Sparse signal models have been the focus of much recent research, leading to (or improving upon) state-of-the-art results in signal, image, and video restoration. This article extends this line of research into a novel framework for local image discrimination tasks, proposing an energy formulation with both sparse reconstruction and class discrimination components, jointly optimized during dictionary learning. This approach improves over the state of the art in texture segmentation experiments using the Brodatz database, and it paves the way for a novel scene analysis and recognition framework based on simultaneously learning discriminative and reconstructive dictionaries. Preliminary results in this direction using examples from the Pascal VOC06 and Graz02 datasets are presented as well.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2012

Task-Driven Dictionary Learning

Julien Mairal; Francis R. Bach; Jean Ponce

Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience, and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations.


arXiv: Learning | 2012

Optimization with Sparsity-Inducing Penalties

Francis R. Bach; Rodolphe Jenatton; Julien Mairal; Guillaume Obozinski

Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. They were first dedicated to linear variable selection but numerous extensions have now emerged such as structured sparsity or kernel selection. It turns out that many of the related estimation problems can be cast as convex optimization problems by regularizing the empirical risk with appropriate nonsmooth norms. The goal of this monograph is to present from a general perspective optimization tools and techniques dedicated to such sparsity-inducing penalties. We cover proximal methods, block-coordinate descent, reweighted l2-penalized techniques, working-set and homotopy methods, as well as non-convex formulations and extensions, and provide an extensive set of experiments to compare various algorithms from a computational point of view.


computer vision and pattern recognition | 2010

Discriminative clustering for image co-segmentation

Armand Joulin; Francis R. Bach; Jean Ponce

Purely bottom-up, unsupervised segmentation of a single image into foreground and background regions remains a challenging task for computer vision. Co-segmentation is the problem of simultaneously dividing multiple images into regions (segments) corresponding to different object classes. In this paper, we combine existing tools for bottom-up image segmentation such as normalized cuts, with kernel methods commonly used in object recognition. These two sets of techniques are used within a discriminative clustering framework: the goal is to assign foreground/background labels jointly to all images, so that a supervised classifier trained with these labels leads to maximal separation of the two classes. In practice, we obtain a combinatorial optimization problem which is relaxed to a continuous convex optimization problem, that can itself be solved efficiently for up to dozens of images. We illustrate the proposed method on images with very similar foreground objects, as well as on more challenging problems with objects with higher intra-class variations.


international conference on machine learning | 2007

More efficiency in multiple kernel learning

Alain Rakotomamonjy; Francis R. Bach; Stéphane Canu; Yves Grandvalet

An efficient and general multiple kernel learning (MKL) algorithm has been recently proposed by Sonnenburg et al. (2006). This approach has opened new perspectives since it makes the MKL approach tractable for large-scale problems, by iteratively using existing support vector machine code. However, it turns out that this iterative algorithm needs several iterations before converging towards a reasonable solution. In this paper, we address the MKL problem through an adaptive 2-norm regularization formulation. Weights on each kernel matrix are included in the standard SVM empirical risk minimization problem with a l1 constraint to encourage sparsity. We propose an algorithm for solving this problem and provide an new insight on MKL algorithms based on block 1-norm regularization by showing that the two approaches are equivalent. Experimental results show that the resulting algorithm converges rapidly and its efficiency compares favorably to other MKL algorithms.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2011

A Tensor-Based Algorithm for High-Order Graph Matching

Olivier Duchenne; Francis R. Bach; In So Kweon; Jean Ponce

This paper addresses the problem of establishing correspondences between two sets of visual features using higher order constraints instead of the unary or pairwise ones used in classical methods. Concretely, the corresponding hypergraph matching problem is formulated as the maximization of a multilinear objective function over all permutations of the features. This function is defined by a tensor representing the affinity between feature tuples. It is maximized using a generalization of spectral techniques where a relaxed problem is first solved by a multidimensional power method and the solution is then projected onto the closest assignment matrix. The proposed approach has been implemented, and it is compared to state-of-the-art algorithms on both synthetic and real data.

Collaboration


Dive into the Francis R. Bach's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Ponce

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Guillaume Obozinski

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas Le Roux

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

K. S. Sesh Kumar

International Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark W. Schmidt

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge