Francisca Mulero
Ciber
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francisca Mulero.
Nature Communications | 2010
Daniel Herranz; Maribel Muñoz-Martin; Marta Cañamero; Francisca Mulero; Barbara Martinez-Pastor; Oscar Fernandez-Capetillo; Manuel Serrano
Genetic overexpression of protein deacetylase Sir2 increases longevity in a variety of lower organisms, and this has prompted interest in the effects of its closest mammalian homologue, Sirt1, on ageing and cancer. We have generated transgenic mice moderately overexpressing Sirt1 under its own regulatory elements (Sirt1-tg). Old Sirt1-tg mice present lower levels of DNA damage, decreased expression of the ageing-associated gene p16(Ink4a), a better general health and fewer spontaneous carcinomas and sarcomas. These effects, however, were not sufficiently potent to affect longevity. To further extend these observations, we developed a metabolic syndrome-associated liver cancer model in which wild-type mice develop multiple carcinomas. Sirt1-tg mice show a reduced susceptibility to liver cancer and exhibit improved hepatic protection from both DNA damage and metabolic damage. Together, these results provide direct proof of the anti-ageing activity of Sirt1 in mammals and of its tumour suppression activity in ageing- and metabolic syndrome-associated cancer.
Cancer Cell | 2010
Marta Puyol; Alberto Martín; Pierre Dubus; Francisca Mulero; Pilar Pizcueta; Gulfaraz Khan; Carmen Guerra; David Santamaría; Mariano Barbacid
We have unveiled a synthetic lethal interaction between K-Ras oncogenes and Cdk4 in a mouse tumor model that closely recapitulates human non-small cell lung carcinoma (NSCLC). Ablation of Cdk4, but not Cdk2 or Cdk6, induces an immediate senescence response only in lung cells that express an endogenous K-Ras oncogene. No such response occurs in lungs expressing a single Cdk4 allele or in other K-Ras-expressing tissues. More importantly, targeting Cdk4 alleles in advanced tumors detectable by computed tomography scanning also induces senescence and prevents tumor progression. These observations suggest that robust and selective pharmacological inhibition of Cdk4 may provide therapeutic benefit for NSCLC patients carrying K-RAS oncogenes.
Nature Genetics | 2009
Matilde Murga; Samuel F. Bunting; Maria F Montaña; Rebeca Soria; Francisca Mulero; Marta Cañamero; Youngsoo Lee; Peter J. McKinnon; André Nussenzweig; Oscar Fernandez-Capetillo
Although DNA damage is considered a driving force for aging, the nature of the damage that arises endogenously remains unclear. Replicative stress, a source of endogenous DNA damage, is prevented primarily by the ATR kinase. We have developed a mouse model of Seckel syndrome characterized by a severe deficiency in ATR. Seckel mice show high levels of replicative stress during embryogenesis, when proliferation is widespread, but this is reduced to marginal amounts in postnatal life. In spite of this decrease, adult Seckel mice show accelerated aging, which is further aggravated in the absence of p53. Together, these results support a model whereby replicative stress, particularly in utero, contributes to the onset of aging in postnatal life, and this is balanced by the replicative stress–limiting role of the checkpoint proteins ATR and p53.
Cell Metabolism | 2012
Ana Ortega-Molina; Alejo Efeyan; Elena Lopez-Guadamillas; Maribel Muñoz-Martin; Gonzalo Gómez-López; Marta Cañamero; Francisca Mulero; Joaquín Pastor; Sonia Martinez; Eduardo Romanos; M. Mar González-Barroso; Eduardo Rial; Ángela M. Valverde; James R. Bischoff; Manuel Serrano
Aging in worms and flies is regulated by the PI3K/Akt/Foxo pathway. Here we extend this paradigm to mammals. Pten(tg) mice carrying additional genomic copies of Pten are protected from cancer and present a significant extension of life span that is independent of their lower cancer incidence. Interestingly, Pten(tg) mice have an increased energy expenditure and protection from metabolic pathologies. The brown adipose tissue (BAT) of Pten(tg) mice is hyperactive and presents high levels of the uncoupling protein Ucp1, which we show is a target of Foxo1. Importantly, a synthetic PI3K inhibitor also increases energy expenditure and hyperactivates the BAT in mice. These effects can be recapitulated in isolated brown adipocytes and, moreover, implants of Pten(tg) fibroblasts programmed with Prdm16 and Cebpβ form subcutaneous brown adipose pads more efficiently than wild-type fibroblasts. These observations uncover a role of Pten in promoting energy expenditure, thus decreasing nutrient storage and its associated damage.
Cancer Cell | 2009
Damia Tormo; Agnieszka Checinska; Direna Alonso-Curbelo; Estela Cañón; Erica Riveiro-Falkenbach; Tonantzin G. Calvo; Lionel Larribere; Diego Megías; Francisca Mulero; Miguel A. Piris; Rupesh Dash; Paola M. Barral; José Luis Rodríguez-Peralto; Pablo L. Ortiz-Romero; Thomas Tüting; Paul B. Fisher; Maria S. Soengas
Inappropriate drug delivery, secondary toxicities, and persistent chemo- and immunoresistance have traditionally compromised treatment response in melanoma. Using cellular systems and genetically engineered mouse models, we show that melanoma cells retain an innate ability to recognize cytosolic double-stranded RNA (dsRNA) and mount persistent stress response programs able to block tumor growth, even in highly immunosuppressed backgrounds. The dsRNA mimic polyinosine-polycytidylic acid, coadministered with polyethyleneimine as carrier, was identified as an unanticipated inducer of autophagy downstream of an exacerbated endosomal maturation program. A concurrent activity of the dsRNA helicase MDA-5 driving the proapoptotic protein NOXA resulted in an efficient autodigestion of melanoma cells. These results reveal tractable links for therapeutic intervention among dsRNA helicases, endo/lysosomes, and apoptotic factors.
Cell Reports | 2015
Juan Manuel Povedano; Paula Martínez; Juana M. Flores; Francisca Mulero; Maria A. Blasco
Idiopathic pulmonary fibrosis (IPF) is a degenerative disease of the lungs with an average survival post-diagnosis of 2-3 years. New therapeutic targets and treatments are necessary. Mutations in components of the telomere-maintenance enzyme telomerase or in proteins important for telomere protection are found in both familial and sporadic IPF cases. However, the lack of mouse models that faithfully recapitulate the human disease has hampered new advances. Here, we generate two independent mouse models that develop IPF owing to either critically short telomeres (telomerase-deficient mice) or severe telomere dysfunction in the absence of telomere shortening (mice with Trf1 deletion in type II alveolar cells). We show that both mouse models develop pulmonary fibrosis through induction of telomere damage, thus providing proof of principle of the causal role of DNA damage stemming from dysfunctional telomeres in IPF development and identifying telomeres as promising targets for new treatments.
Journal of Cell Biology | 2010
Carolyn McNees; Agueda M. Tejera; Paula Martínez; Matilde Murga; Francisca Mulero; Oscar Fernandez-Capetillo; Maria A. Blasco
ATR recognizes critically short telomeres as fragile sites and protects them from chromosomal fusions.
Nature Communications | 2014
Christian Bär; Bruno Bernardes de Jesus; Rosa Serrano; Agueda M. Tejera; Eduard Ayuso; Veronica Jimenez; Ivan Formentini; Maria Bobadilla; Jacques Mizrahi; Alba de Martino; Gonzalo Gómez; David G. Pisano; Francisca Mulero; Kai C. Wollert; Fatima Bosch; Maria A. Blasco
Coronary heart disease is one of the main causes of death in the developed world, and treatment success remains modest, with high mortality rates within 1 year after myocardial infarction (MI). Thus, new therapeutic targets and effective treatments are necessary. Short telomeres are risk factors for age-associated diseases, including heart disease. Here we address the potential of telomerase (Tert) activation in prevention of heart failure after MI in adult mice. We use adeno-associated viruses for cardiac-specific Tert expression. We find that upon MI, hearts expressing Tert show attenuated cardiac dilation, improved ventricular function and smaller infarct scars concomitant with increased mouse survival by 17% compared with controls. Furthermore, Tert treatment results in elongated telomeres, increased numbers of Ki67 and pH3-positive cardiomyocytes and a gene expression switch towards a regeneration signature of neonatal mice. Our work suggests telomerase activation could be a therapeutic strategy to prevent heart failure after MI.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Jelena Urosevic; Vincent Sauzeau; María Luisa Soto-Montenegro; Santiago Reig; Manuel Desco; Emma Burkitt Wright; Marta Cañamero; Francisca Mulero; Sagrario Ortega; Xosé R. Bustelo; Mariano Barbacid
RASopathies are a class of developmental syndromes that result from congenital mutations in key elements of the RAS/RAF/MEK signaling pathway. A well-recognized RASopathy is the cardio-facio-cutaneous (CFC) syndrome characterized by a distinctive facial appearance, heart defects, and mental retardation. Clinically diagnosed CFC patients carry germ-line mutations in four different genes, B-RAF, MEK1, MEK2, and K-RAS. B-RAF is by far the most commonly mutated locus, displaying mutations that most often result in constitutive activation of the B-RAF kinase. Here, we describe a mouse model for CFC generated by germ-line expression of a B-RafLSLV600E allele. This targeted allele allows low levels of expression of B-RafV600E, a constitutively active B-Raf kinase first identified in human melanoma. B-Raf+/LSLV600E mice are viable and display several of the characteristic features observed in CFC patients, including reduced life span, small size, facial dysmorphism, cardiomegaly, and epileptic seizures. These mice also show up-regulation of specific catecholamines and cataracts, two features detected in a low percentage of CFC patients. In addition, B-Raf+/LSLV600E mice develop neuroendocrine tumors, a pathology not observed in CFC patients. These mice may provide a means of better understanding the pathophysiology of at least some of the clinical features present in CFC patients. Moreover, they may serve as a tool to evaluate the potential therapeutic efficacy of B-RAF inhibitors and establish the precise window at which they could be effective against this congenital syndrome.
Nature | 2017
David Olmeda; Daniela Cerezo-Wallis; Erica Riveiro-Falkenbach; Paula C. Pennacchi; Marta Contreras-Alcalde; Nuria Ibarz; Metehan Cifdaloz; Xavier Catena; Tonantzin G. Calvo; Estela Cañón; Direna Alonso-Curbelo; Javier Suarez; Lisa Osterloh; Osvaldo Graña; Francisca Mulero; Diego Megías; Marta Cañamero; Jorge Luis Martínez-Torrecuadrada; Chandrani Mondal; Julie Di Martino; David Lora; Ines Martinez-Corral; Jose Javier Bravo-Cordero; Javier Muñoz; Susana Puig; Pablo L. Ortiz-Romero; José Luis Rodríguez-Peralto; Sagrario Ortega; Maria S. Soengas
Cutaneous melanoma is a type of cancer with an inherent potential for lymph node colonization, which is generally preceded by neolymphangiogenesis. However, sentinel lymph node removal does not necessarily extend the overall survival of patients with melanoma. Moreover, lymphatic vessels collapse and become dysfunctional as melanomas progress. Therefore, it is unclear whether (and how) lymphangiogenesis contributes to visceral metastasis. Soluble and vesicle-associated proteins secreted by tumours and/or their stroma have been proposed to condition pre-metastatic sites in patients with melanoma. Still, the identities and prognostic value of lymphangiogenic mediators remain unclear. Moreover, our understanding of lymphangiogenesis (in melanomas and other tumour types) is limited by the paucity of mouse models for live imaging of distal pre-metastatic niches. Injectable lymphatic tracers have been developed, but their limited diffusion precludes whole-body imaging at visceral sites. Vascular endothelial growth factor receptor 3 (VEGFR3) is an attractive ‘lymphoreporter’ because its expression is strongly downregulated in normal adult lymphatic endothelial cells, but is activated in pathological situations such as inflammation and cancer. Here, we exploit this inducibility of VEGFR3 to engineer mouse melanoma models for whole-body imaging of metastasis generated by human cells, clinical biopsies or endogenously deregulated oncogenic pathways. This strategy revealed early induction of distal pre-metastatic niches uncoupled from lymphangiogenesis at primary lesions. Analyses of the melanoma secretome and validation in clinical specimens showed that the heparin-binding factor midkine is a systemic inducer of neo-lymphangiogenesis that defines patient prognosis. This role of midkine was linked to a paracrine activation of the mTOR pathway in lymphatic endothelial cells. These data support the use of VEGFR3 reporter mice as a ‘MetAlert’ discovery platform for drivers and inhibitors of metastasis.