Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisca Pérez-Severiano is active.

Publication


Featured researches published by Francisca Pérez-Severiano.


Neurochemistry International | 2004

S-Allylcysteine, a garlic-derived antioxidant, ameliorates quinolinic acid-induced neurotoxicity and oxidative damage in rats.

Francisca Pérez-Severiano; Mayra Rodrı́guez-Pérez; José Pedraza-Chaverri; Perla D. Maldonado; Omar Noel Medina-Campos; Alma Ortiz-Plata; Aurora Sánchez-García; Juana Villeda-Hernández; Sonia Galván-Arzate; Penélope Aguilera; Abel Santamaría

Excitotoxicity elicited by overactivation of N-methyl-D-aspartate receptors is a well-known characteristic of quinolinic acid-induced neurotoxicity. However, since many experimental evidences suggest that the actions of quinolinic acid also involve reactive oxygen species formation and oxidative stress as major features of its pattern of toxicity, the use of antioxidants as experimental tools against the deleterious effects evoked by this neurotoxin becomes more relevant. In this work, we investigated the effect of a garlic-derived compound and well-characterized free radical scavenger, S-allylcysteine, on quinolinic acid-induced striatal neurotoxicity and oxidative damage. For this purpose, rats were administered S-allylcysteine (150, 300 or 450 mg/kg, i.p.) 30 min before a single striatal infusion of 1 microl of quinolinic acid (240 nmol). The lower dose (150 mg/kg) of S-allylcysteine resulted effective to prevent only the quinolinate-induced lipid peroxidation (P < 0.05), whereas the systemic administration of 300 mg/kg of this compound to rats decreased effectively the quinolinic acid-induced oxidative injury measured as striatal reactive oxygen species formation (P < 0.01) and lipid peroxidation (P < 0.05). S-Allylcysteine (300 mg/kg) also prevented the striatal decrease of copper/zinc-superoxide dismutase activity (P < 0.05) produced by quinolinate. In addition, S-allylcysteine, at the same dose tested, was able to reduce the quinolinic acid-induced neurotoxicity evaluated as circling behavior (P < 0.01) and striatal morphologic alterations. In summary, S-allylcysteine ameliorates the in vivo quinolinate striatal toxicity by a mechanism related to its ability to: (a) scavenge free radicals; (b) decrease oxidative stress; and (c) preserve the striatal activity of Cu,Zn-superoxide dismutase (Cu,Zn-SOD). This antioxidant effect seems to be responsible for the preservation of the morphological and functional integrity of the striatum.


Brain Research | 2000

Striatal oxidative damage parallels the expression of a neurological phenotype in mice transgenic for the mutation of Huntington's disease.

Francisca Pérez-Severiano; Camilo Ríos; José Segovia

We examined the degree of oxidative damage to the brain of mice transgenic for the mutation responsible for Huntingtons disease. We found that there is a progressive increase in striatal lipid peroxidation (LP), that parallels the worsening of the neurological phenotype. We consider that these transgenic mice may provide an interesting system to test treatments aimed at protecting cells from damage induced by free radicals.


Neurochemical Research | 2004

Increased Formation of Reactive Oxygen Species, but No Changes in Glutathione Peroxidase Activity, in Striata of Mice Transgenic for the Huntington's Disease Mutation

Francisca Pérez-Severiano; Abel Santamaría; José Pedraza-Chaverri; Omar Noel Medina-Campos; Camilo Ríos; José Segovia

The formation of reactive oxygen species (ROS) and the activities of the antioxidant enzymes glutathione peroxidase (GPx) and catalase (CAT) were measured as a function of age in the striatum of mice transgenic for the Huntingtons disease (HD) mutation. Striata from R6/1 transgenic male mice were dissected at different ages (11, 19, and 35 weeks). The amount of dichlorofluorescein (DCF), an index of ROS formation, was significantly increased in R6/1 mice at all ages tested, whereas GPx activity remained unchanged when compared with wild-type control animals in all groups evaluated. CAT activity was very low, just above detection in the striata of both control and transgenic mice. Nineteen and 35-week-old R6/1 mice also developed feet clasping behavior, but only 35-week-old animals showed body weight loss. Our findings support an active role of free radicals in the onset and progression of the neurological phenotype of R6/1 mice. We suggest that changes in ROS formation are due to an age-related increased propensity of the striatum of transgenic animals to generate oxygen radicals as a response to the evolving pathological conditions.


Brain Research | 2002

Age-dependent changes in nitric oxide synthase activity and protein expression in striata of mice transgenic for the Huntington’s disease mutation

Francisca Pérez-Severiano; Bruno Escalante; Paula Vergara; Camilo Ríos; José Segovia

Huntingtons disease (HD) is an autosomal hereditary neurodegenerative disorder caused by an abnormal expansion of the CAG repeats that code for a polyglutamine tract in a novel protein called huntingtin (htt). Both patients and experimental animals exhibit oxidative damage in specific areas of the brain, particularly the striatum. Nitric oxide (NO) is involved in many different physiological processes, and under pathological conditions it may promote oxidative damage through the formation of the highly reactive metabolite peroxynitrite; however, it may also play a role protecting cells from oxidative damage. We previously showed a correlation between the progression of the neurological phenotype and striatal oxidative damage in a line of transgenic mice, R6/1, which expresses a human mutated htt exon 1 with 116 CAG repeats. The purpose of the present work was to explore the participation of NO in the progressive oxidative damage that occurs in the striata of R6/1 mice. We analyzed the role of NO by measuring the activity of nitric oxide synthase (NOS) in the striata of transgenic and control mice at different ages. There was no difference in NOS activity between transgenic and wild-type mice at 11 weeks of age. In contrast, 19-week-old transgenic mice showed a significant increase in NOS activity, compared with same age controls. By 35 weeks of age, there was a decrease in NOS activity in transgenic mice when compared with wild-type controls. NOS protein expression was also determined in 11-, 19- and 35-week-old transgenic mice and wild-type littermates. Our results show increased neuronal NOS expression in 19-week-old transgenic mice, followed by a decreased level in 35-week-old mice, compared with controls, a phenomenon that parallels the changes in NOS enzyme activity. The present results suggest that NO is involved in the process leading to striatal oxidative damage and that it is associated with the onset of the progressive neurological phenotype in mice transgenic for the HD mutation.


Neurochemical Research | 1998

Nitric Oxide Synthase Inhibition Prevents Acute Quinolinate-Induced Striatal Neurotoxicity

Francisca Pérez-Severiano; Camilo Ríos

Quinolinic acid (QUIN) is an endogenous excitotoxin acting on N-methyl-D-aspartate (NMDA) receptors, that leads to neurotoxic damage resembling the alterations observed in Huntingtons disease. Two major end-points of QUIN induced neurotoxicity are both circling behavior (CB) and lipid peroxidation (LP). Recently, nitric oxide (NO) has been implicated as a mediator of cell injury in some neurological disorders, thus, NO as a free radical might be involved in QUIN-induced neurotoxicity and oxidative stress. In the present study we evaluated the possible role of NO on QUIN-induced neurotoxicity, by measuring nitric oxide synthase activity (NOS), before and after QUIN-induced damage and by evaluating the effect of NOS inhibition on acute QUIN-induced CB and LP. Rats were striatally microinjected with QUIN (240 nmol/1μl). QUIN administration increased NOS activity by 327% as compared to control values and this enhancement was inhibited by i.v. pretreatment with a NOS inhibitor the NG-nitro-L-arginine methyl ester (L-NAME) (10 mg/kg). QUIN-induced CB was also attenuated by pretreatment of rats with 1, 5, 10 and 15 mg/kg of L-NAME by −37, −55, −62 and −74% vs QUIN respectively. Similarly, L-NAME also reduced by 32% the QUIN-induced LP. These findings suggest that enhanced NOS activity may participate in QUIN-induced neurotoxicity and oxidative stress.


Neuroscience Letters | 2002

Constitutive and inducible nitric oxide synthase activities after spinal cord contusion in rats

Araceli Dı́az-Ruiz; Antonio Ibarra; Francisca Pérez-Severiano; Gabriel Guízar-Sahagún; Israel Grijalva; Camilo Ríos

Nitric oxide (NO) plays a role in the secondary damage after spinal cord (SC) injury. NO is produced by the activity of two classes of enzymes: calcium-dependent constitutive nitric oxide synthase (NOS) and calcium-independent inducible NOS. To determine the time course of both NOS activities after SC injury, 50 Wistar rats were submitted to severe SC contusion. NOS activities were assayed at the site of SC injury at several times after lesion. Results showed a significant increase of 138 and 96% in the constitutive NOS activity at 4 and 8 h after the lesion, respectively, as compared to sham-operated rats. iNOS activity was increased 72 h after lesion by 103% (P<0.05). In conclusion, both isoforms of NOS increase their activity at different time periods after SC injury.


Neurochemical Research | 2001

Comparative Analysis of Superoxide Dismutase Activity between Acute Pharmacological Models and a Transgenic Mouse Model of Huntington's Disease

Abel Santamaría; Francisca Pérez-Severiano; Erika Rodríguez-Martínez; Perla D. Maldonado; José Pedraza-Chaverri; Camilo Ríos; José Segovia

We examined the activity of striatal superoxide dismutase (SOD) in two acute pharmacological models of Huntingtons disease (HD), and compared it with SOD activity in the striata of mice transgenic for the HD mutation. Total SOD, and Cu/ZnSOD activities increased in young transgenic mice, but decreased in older (35 week) mice. We consider that the increased enzyme activity represents a compensatory mechanism to protect cells from free radical-induced damage, but the system becomes insufficient in older animals. Major decreases in SOD activity were also observed both after quinolinic acid and 3-nitropropionic acid intrastriatal injections. The present results indicate that in both types of HD models striatal oxidative damage occurs, and that it is associated with alterations in the cellular antioxidant system.


European Journal of Pharmacology | 2009

Antioxidant effects of Epicatechin on the hippocampal toxicity caused by Amyloid-beta 25-35 in rats

Elvis Cuevas; Daniel Limón; Francisca Pérez-Severiano; Alfonso Díaz; Laura Ortega; Edgar Zenteno; Jorge Guevara

Amyloid-beta is involved in neurodegeneration in Alzheimers disease. The Amyloid-beta fraction 25-35 (Amyloid-beta 25-35) is believed to cause neurotoxicity through oxidative stress. We evaluated the antioxidant effects of Epicatechin on the Abeta25-35-caused hippocampal toxicity in vivo. Biochemical and histological evaluations, and learning and memory tasks, were assessed. Amyloid-beta 25-35 (100 microM/microL) or vehicle was injected into the CA1 hippocampal region of the rat 5 h after a single oral dose of Epicatechin (30 mg/kg). Lipid peroxidation and reactive oxygen species formation were measured in Amyloid-beta- and Amyloid-beta-Epicatechin-treated groups at 2 h and 24 h after dosing and formation of the lesion. There was an increase in lipid peroxidation and reactive oxygen species formation at 2-h and 24-h postlesion. Learning and memory tests were made 27-30 days after surgery in independent groups under the same experimental conditions. Immunohistochemical detection of glial-fibrilar acidic protein (GFAP) was evaluated in hippocampal tissues from the animals 30-days postsurgery. Amyloid-beta 25-35 caused a significant increase in lipid peroxidation and reactive oxygen species and a decrease in memory skills. In addition, hippocampal tissues from Amyloid-beta 25-35-treated animals showed an increased immunoreactivity against GFAP. In contrast, animals pretreated with Epicatechin had a significant decrease in lipid peroxidation and reactive oxygen species and an improvement in memory skills. GFAP immunoreactivity was also decreased. Our results showed that Amyloid-beta 25-35-caused oxidative damage of the hippocampus was blocked by the administration of Epicatechin.


Journal of Cardiovascular Pharmacology | 2012

Clofibrate Pparα Activation Reduces Oxidative Stress and Improves Ultrastructure and Ventricular Hemodynamics in No-flow Myocardial Ischemia

Luz Ibarra-Lara; Enrique Hong; Elizabeth Soria-Castro; Juan Carlos Torres-Narváez; Francisca Pérez-Severiano; Leonardo del Valle-Mondragón; Luz Graciela Cervantes-Pérez; Margarita Ramírez-Ortega; Gustavo Pastelín-Hernández; Alicia Sánchez-Mendoza

Abstract: Peroxisome proliferator–activated receptors (PPAR) play a critical physiological role in energy homeostasis, in inflammation, and a protective role in cardiovascular function. We assessed the antioxidant effect of clofibrate-induced Peroxisome proliferator-activated receptor alpha (PPAR&agr;) stimulation on ischemic myocardium on myocardial morphology and hemodynamics. Male Wistar rats (300 g) were distributed into the following groups: (1) Sham, (2) myocardial ischemia vehicle treated (MI-V), and (3) myocardial ischemia clofibrate [100 mg/kg/ intraperitoneally) treated (MI-C). Reactive oxygen species (ROS) and lipid peroxidation increased in MI-V, whereas clofibrate prevented this effect. Superoxide dismutase (SOD)-1 and SOD-2 expression increased 4 times upon PPAR&agr; stimulation. SOD-1, SOD-2, and catalase activity also increased in response to clofibrate. eNOS mRNA and tetrahydrobiopterin increased in the MI-C group. Clofibrate was able to decrease Angiotensin II (AngII), AngII AT1-receptor, whereas Ang-(1-7) and AngII AT2-receptor expression increased. Assessment of myocardial morphology and cardiac function show that clofibrate improved histological features and hemodynamic parameters. Our results suggest that PPAR&agr; stimulation by clofibrate increases the antioxidant defense, leading to improved cardiac function.


Journal of Neuroscience Research | 2008

Antioxidant, antiinflammatory and antiapoptotic effects of dapsone in a model of brain ischemia/reperfusion in rats

Araceli Diaz-Ruiz; Carlos Zavala; Sergio Montes; Alma Ortiz-Plata; Hermelinda Salgado-Ceballos; Sandra Orozco-Suárez; Concepción Nava-Ruiz; Iván Pérez-Neri; Francisca Pérez-Severiano; Camilo Ríos

Although dapsone (4,4′‐diaminodiphenylsulfone) has been described as a neuroprotective agent in occlusive focal ischemia in rats, its mechanism of action is still unknown. To explore this mechanism, oxidative, inflammatory and apoptotic processes were evaluated in the striatum of adult rats using a model of ischemia‐reperfusion (I/R), either with or without dapsone treatment. Male Wistar rats were submitted to transient middle cerebral artery occlusion for 2 hr, followed by reperfusion. Rats were dosed either with dapsone (12.5 mg/kg i.p.) or vehicle 30 min before or 30 min after the ischemia onset. Lipid peroxidation (LP) and nitrotyrosine contents were measured 22 hr after reperfusion, and myeloperoxidase activity was evaluated 46 hr after I/R. Different markers for apoptosis and necrosis were also evaluated both at 24 and 72 hr after I/R experimental procedure. LP increased by 37% in ischemic animals vs controls, and this effect was reversed by dapsone treatments. A similar effect was observed regarding nitrotyrosine striatal contents. Myeloperoxidase activity, a marker of inflammatory response, increased 3.7‐fold in ischemic animals vs. control rats, and dapsone treatment antagonized that effect. Although apoptosis was increased by the effect of ischemia at both evaluation times, dapsone antagonized that effect only at 72 hr after surgery. Dapsone antagonized all of the I/R end points measured, showing a remarkable ability to decrease markers of damage through antioxidant, antiinflammatory, and anti‐apoptotic effects.

Collaboration


Dive into the Francisca Pérez-Severiano's collaboration.

Top Co-Authors

Avatar

Camilo Ríos

Universidad Autónoma Metropolitana

View shared research outputs
Top Co-Authors

Avatar

José Segovia

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Sergio Montes

Universidad Autónoma Metropolitana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorge Guevara

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

José Pedraza-Chaverri

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Abel Santamaría

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Araceli Diaz-Ruiz

Universidad Autónoma Metropolitana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paula Vergara

Instituto Politécnico Nacional

View shared research outputs
Researchain Logo
Decentralizing Knowledge