Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisca Rodríguez is active.

Publication


Featured researches published by Francisca Rodríguez.


Hypertension | 2000

Renal Changes Induced by a Cyclooxygenase-2 Inhibitor During Normal and Low Sodium Intake

Francisca Rodríguez; Llinás Mt; Juan D. González; Jose Rivera; F. Javier Salazar

Cyclooxygenase-2 (COX-2) has been identified in renal tissues under normal conditions, with its expression enhanced during sodium restriction. To evaluate the role of COX-2-derived metabolites in the regulation of renal function, we infused a selective inhibitor (nimesulide) in anesthetized dogs with normal or low sodium intake. The renal effects elicited by nimesulide and a non-isozyme-specific inhibitor (meclofenamate) were compared during normal sodium intake. In ex vivo assays, meclofenamate, but not nimesulide, prevented the platelet aggregation elicited by arachidonic acid. During normal sodium intake, nimesulide infusion (n=6) had no effects on arterial pressure or renal hemodynamics but did reduce urinary sodium excretion, urine flow rate, and fractional lithium excretion. In contrast, nimesulide administration increased arterial pressure and decreased renal blood flow, urine flow rate, and fractional lithium excretion during low sodium intake (n=6). COX-2 inhibition reduced urinary prostaglandin E(2) excretion in both groups but did not modify plasma renin activity in dogs with low (8.1+/-1.1 ng angiotensin I. mL(-1). h(-1)) or normal (1.8+/-0.4 ng angiotensin I. mL(-1). h(-1)) sodium intake. Meclofenamate infusion in dogs with normal sodium intake (n=8) induced a greater renal hemodynamic effect than nimesulide infusion. These results suggest that COX-2-derived metabolites (1) are involved in the regulation of sodium excretion in dogs with normal sodium intake, (2) play an important role in the regulation of renal hemodynamic and excretory function in dogs with low sodium intake, and (3) are not involved in the maintenance of the high renin levels during a long-term decrease in sodium intake.


Maturitas | 2008

2-Methoxyestradiol attenuates hypertension and coronary vascular remodeling in spontaneously hypertensive rats.

Barbara Bonacasa; M.L. Sanchez; Francisca Rodríguez; Bernardo López; T. Quesada; Francisco J. Fenoy; Isabel Hernández

OBJECTIVES Accumulating data provide evidence that some metabolites of 17beta-estradiol are biologically active and mediate multiple effects on the cardiovascular and renal systems. We investigated the effect of 2-methoxyestradiol (an active metabolite of estradiol with non-feminizing activity) on the development of hypertension and myocardial vascular remodeling in male and female ovarectomized SHR. METHODS Rats were divided into five groups: intact females, ovarectomized (OVX), OVX+ 2-methoxyestradiol (2ME), control males, and male+2ME. Systolic blood pressure was determined from 10 to 18 weeks. Structural changes in coronary vessels were quantified by an image analyzer. Immunoblotting of phosphorylated ERK1/2 and NADPH oxidase activity were performed on mesenteric arteries. RESULTS Treatment with 2ME reduced the increase in systolic blood pressure in male and ovarectomized rats to values not different from those obtained in intact females. Myocardial arterioles and small arteries showed significant increases in wall-to-lumen ratio and perivascular fibrosis in male and ovarectomized rats when compared with intact females. NADPH oxidase activity was increased in mesenteric arteries from males and ovarectomized females as compared with intact females. Finally, the expression of phosphorilated ERK1/2 were significantly higher in mesenteric arteries from male and ovariectomized animals than in those from intact females. Those effects of ovarectomy and gender differences were totally or partially prevented by treatment with 2-methoxyestradiol. CONCLUSIONS These data demonstrate that 2-methoxyestradiol protects the vasculature from hypertension-induced myocardial arterial remodeling in male and ovarectomized SHR, and that might be in part related to decreased superoxide generation and ERK1/2 activation.


Current Pharmaceutical Design | 2013

Reactive Oxygen and Nitrogen Species in the Renal Ischemia/Reperfusion Injury

Francisca Rodríguez; Barbara Bonacasa; Francisco J. Fenoy; Miguel G. Salom

Renal ischemia is the most common cause of acute kidney injury (AKI) still associated with high mortality rates of about 50% in the intensive care unit. Postischemic AKI is characterized by decreased glomerular filtration rate and high renal vascular resistance with endothelial activation and dysfunction, a process of critical importance that is followed by a reduction in microvascular blood flow mainly affecting the renal outer medulla. The pathophysiology of postischemic AKI remains incompletely understood, although it seems to be a phenomenon of altered renal hemodynamics, linked critically to the production of high amounts of nitric oxide and free radicals. On the other hand, and depending on the severity of renal ischemia, tubular epithelial cells undergo a varying degree of necrosis or apoptosis with tubular obstruction followed by both, anatomical and functional recovery. The way in which vascular and tubular epithelium recover determines the final status of the renal function, ranging from full recovery to chronic renal failure and ultimately to end-stage renal disease. In this review we will revise the mechanisms responsible for these pathophysiologic alterations, including the role of heme oxygenase system and sex differences in the susceptibility to ischemic acute renal failure, and we will also review the pre- and postconditioning phenomena, in which brief episodes of ischemia before (pre-conditioning) or after (post-conditioning) the prolonged ischemia have a protective effect on AKI after reperfusion. Interestingly, these protective responses can be elicited by ischemizing distant tissues (remote conditioning). A better understanding of these mechanisms may help to improve the clinical outcome of those patients.


Hypertension | 2001

Role of cyclooxygenase-2-derived metabolites and NO in renal response to bradykinin

Francisca Rodríguez; Llinás Mt; Carol Moreno; F. Javier Salazar

It has been reported that bradykinin (BK) can induce or activate both cyclooxygenase (COX) isoforms and that the renal effects of BK seem to be mediated by prostaglandins and NO. The first objective of this study was to evaluate the relative contribution of both COX isoforms in mediating the renal response to BK in anesthetized dogs. The second objective was to examine whether COX-2 inhibition potentiates the renal effects induced by NO reduction during BK administration. Intrarenal BK infusion (8 ng · kg−1 · min−1, n=6) elicited a significant increment in renal blood flow, sodium excretion, urine volume, and the fractional excretion of lithium. COX-2 inhibition (nimesulide, 5 &mgr;g · kg−1 · min−1, n=6) reduced the renal vasodilatation but did not significantly modify the natriuresis or diuresis secondary to BK. Administration of a nonspecific isozyme COX inhibitor (meclofenamate, 5 &mgr;g · kg−1 · min−1; n=6) did not induce greater effects than those produced by nimesulide. NO synthesis reduction (NG-nitro-l-arginine methyl ester [L-NAME], 3 &mgr;g · kg−1 · min−1) prevented the renal vasodilatation and the increment in the fractional excretion of lithium induced by BK but did not affect the natriuretic or diuretic response. Simultaneous nimesulide infusion did not modify the renal effects of L-NAME during BK infusion (n=6). Finally, inhibition of both COX isoforms with meclofenamate, in dogs treated with L-NAME (n=6), completely prevented the vasodilator and excretory actions of BK. The results of this study suggest that (1) NO and prostanoids dependent on COX-2 seem to be involved in the renal vasodilatation induced by BK, and (2) there is an interaction between NO and COX-1–derived metabolites in mediating the natriuretic and diuretic response to BK.


Journal of Cardiovascular Pharmacology | 2000

Release of nitric oxide after acute hypertension.

Eduardo Nava; Francisca Rodríguez; Carol Moreno; Llinás Mt; Salazar Fj

We have shown that NO production, assessed by measuring changes in plasma nitrate concentration, is down-regulated when blood pressure falls. This study intended to determine first, whether NO-derived plasma nitrate varies in response to increases in blood pressure induced by different mechanical and pharmacologic stimuli, including angiotensin II and catecholamines; and second, specifically to study the interaction between angiotensin II and NO production. An intravenous infusion (4-10 min) of norepinephrine (7.5 microg/kg/min), phenylephrine (30 microg/kg/min), or angiotensin II (0.3 and 3 microg/kg/min) caused hypertension accompanied by an increase in plasma nitrate, as assessed by high-performance capillary electrophoresis. Mechanical hypertension elicited by aortic occlusion also was accompanied by an increase in plasma nitrate. Angiotensin II (0.03, 0.3, and 3 microg/kg/min, 10 min) dose-dependently increased blood pressure. The intermediate and high dose, but not the low dose, of angiotensin II increased plasma nitrate concentration. N(G)-nitro-L-arginine methyl ester (L-NAME) lowered the basal concentration of plasma nitrate, abolished the increase in plasma nitrate elicited by angiotensin II and norepinephrine, and potentiated the pressor effect of the low dose of angiotensin II, although this dose did not increase NO production. L-NAME also potentiated the pressor effects of the intermediate dose of angiotensin II. This study demonstrates that an augmented systemic production of NO, measured as an increase in plasma nitrate, takes place after acute hypertension. The results of this study suggest that an increase in NO generation occurs when angiotensin II hypertension exceeds a certain limit, below which the basal production of NO is sufficient to compensate the vasoconstriction.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Chronic tempol treatment attenuates the renal hemodynamic effects induced by a heme oxygenase inhibitor in streptozotocin diabetic rats

Francisca Rodríguez; Bernardo Lopez; Cayetano Perez; Francisco J. Fenoy; Isabel Hernández; David E. Stec; Giovanni Li Volti; Miguel G. Salom

Heme oxygenase-1 (HO-1) is induced by oxidative stress and plays an important role in protecting the kidney from oxidant-mediated damage in the streptozotocin (STZ) rat model of type-1 diabetes mellitus (DM-1). HO-derived metabolites, presumably carbon monoxide (CO), mediate vasodilatory influences in the renal circulation, particularly in conditions linked to elevated HO-1 protein expression or diminished nitric oxide (NO) levels. We tested the hypothesis that diabetes increases oxidative stress and induces HO-1 protein expression, which contributes to regulate renal hemodynamics in conditions of low NO bioavailability. Two weeks after the induction of diabetes with STZ (65 mg/kg iv), Sprague-Dawley rats exhibited higher renal HO-1 protein expression, hyperglycemia, and elevated renal nitrotyrosine levels than control normoglycemic animals. In anesthetized diabetic rats, renal vascular resistance (RVR) was increased, and in vivo cortical NO levels were reduced (P < 0.05) compared with control animals. Acute administration of the HO inhibitor Stannous mesoporphyrin (SnMP; 40 μmol/kg iv) did not alter renal hemodynamics in control rats, but greatly decreased glomerular filtration rate and renal blood flow, markedly increasing RVR in hyperglycemic diabetic rats. Chronic oral treatment with the SOD mimetic tempol prevented the elevation of nitrotyrosine, the HO-1 protein induction, and the increases in RVR induced by SnMP in the diabetic group, without altering basal NO concentrations or RVR. Increasing concentrations of a CO donor (CO-releasing molecule-A1) on pressurized renal interlobar arteries elicited a comparable relaxation in vessels taken from control or diabetic animals. These results suggest that oxidative stress-induced HO-1 exerts vasodilatory actions that partially maintain renal hemodynamics in uncontrolled DM-1.


Experimental Physiology | 2013

Endothelial dysfunction in gestational hypertension induced by catechol‐O‐methyltransferase inhibition

Moises Hernández; Isabel Hernández; Francisca Rodríguez; M. Pertegal; Barbara Bonacasa; Miguel G. Salom; T. Quesada; Francisco J. Fenoy

•  What is the central question of this study? Gestational hypertension is a major obstetric problem of placental origin, associated with reduced production of 2‐methoxyestradiol. In this study, we evaluated in rats the consequences of pharmacological inhibition of catechol‐O‐methyltransferase, the enzyme that produces 2‐methoxyestradiol from 2‐hydroxyestradiol. •  What is the main finding and its importance? The present study provides evidence that inhibition of catechol‐O‐methyltransferase in pregnant rats produces arterial hypertension and endothelial dysfunction due to reduced nitric oxide bioavailability. The results help us to understand gestational hypertension and support a possible new approach to early diagnosis and treatment of the disease.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Sex differences in nitrosative stress during renal ischemia.

Francisca Rodríguez; Susana Nieto-Cerón; Francisco J. Fenoy; Bernardo Lopez; Isabel Hernández; Raquel Rodado Martinez; Ma José González Soriano; Miguel G. Salom

Females suffer a less severe ischemic acute renal failure than males, apparently because of higher nitric oxide (NO) bioavailability and/or lower levels of oxidative stress. Because the renal ischemic injury is associated with outer medullary (OM) endothelial dysfunction, the present study evaluated sex differences in OM changes of NO and peroxynitrite levels (by differential pulse voltammetry and amperometry, respectively) during 45 min of ischemia and 60 min of reperfusion in anesthetized Sprague-Dawley rats. Endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) protein expression and their phosphorylated forms [peNOS(Ser1177) and pnNOS(Ser1417)], 3-nitrotyrosine, reduced sulfhydryl groups (-SH), and glomerular filtration rate (GFR) were also determined. No sex differences were observed in monomeric eNOS and nNOS expression, NO, or 3-nitrotyrosine levels in nonischemic kidneys, but renal -SH content was higher in females. Ischemia increased dimeric/monomeric eNOS and nNOS ratio more in females, but the dimeric phosphorylated peNOS(Ser1177) and pnNOS(Ser1417) forms rose similarly in both sexes, indicating no sex differences in nitric oxide synthase activation. However, NO levels increased more in females than in males (6,406.0 ± 742.5 and 4,058.2 ± 272.35 nmol/l respectively, P < 0.05), together with a lower increase in peroxynitrite current (5.5 ± 0.7 vs. 12.7 ± 1.5 nA, P < 0.05) and 3-nitrotyrosine concentration, (28.7 ± 3.7 vs. 48.7 ± 3.7 nmol/mg protein, P < 0.05) in females than in males and a better preserved GFR after ischemia in females than in males (689.7 ± 135.0 and 221.4 ± 52.5 μl·min(-1)·g kidney wt(-1), P < 0.01). Pretreatment with the antioxidants N-acetyl-L-cysteine or ebselen abolished sex differences in peroxynitrite, nitrotyrosine, and GFR, suggesting that a greater oxidative and nitrosative stress worsens renal damage in males.


Hypertension | 1998

Renal Changes Induced by Nitric Oxide and Prostaglandin Synthesis Reduction Effects of Trandolapril and Verapamil

Llinás Mt; Juan D. González; Francisca Rodríguez; Eduardo Nava; Taddei S; Francisco Salazar

The benefits of the simultaneous administration of low doses of a calcium antagonist and a converting enzyme inhibitor in the treatment of hypertension and renal vasoconstriction are well established. The objective of this study was to evaluate whether the administration of low doses of a calcium antagonist and a converting-enzyme inhibitor have beneficial effects in treating the renal alterations induced by the acute administration of a cyclooxygenase inhibitor when nitric oxide synthesis is reduced. These effects were examined in anesthetized dogs before and during an acute sodium load. It was found that the intrarenal infusion of meclofenamate (5 microg x kg[-1] x min[-1]), simultaneously with a low dose of NG-nitro-L-arginine methyl ester (1 microg x kg[-1] x min[-1]), produced a 40% decrease of renal blood flow and glomerular filtration rate and a reduction in the renal excretory response to the sodium load. In a second group of dogs, intrarenal verapamil (0.5 microg x kg[-1] x min[-1]) was effective in blocking the effects of nitric oxide and prostaglandin synthesis inhibition on sodium excretion and glomerular filtration rate but did not modify the effects on renal blood flow. An intrarenal infusion of trandolapril (0.3 microg x kg[-1] x min[-1]) was effective in a third group of dogs in reducing the renal hemodynamic effects but not in preventing the antinatriuretic effect observed in the first group. Finally, in a fourth group, the simultaneous administration of verapamil and trandolapril was effective in treating all the renal changes induced by the cyclooxygenase inhibitor when nitric oxide synthesis was reduced. These results suggest that the combination of low doses of trandolapril and verapamil has additive effects in treating the renal vasoconstriction and antinatriuresis induced by the acute administration of a cyclooxygenase inhibitor, when nitric oxide synthesis is reduced.


Journal of Cardiovascular Pharmacology | 2000

Renal effects of prolonged cyclooxygenase inhibition when angiotensin II levels are elevated.

González Jd; Llinás Mt; Carol Moreno; Francisca Rodríguez; Salazar Fj

We examined the renal functional and hemodynamic changes induced by prolonged cyclooxygenase (COX) inhibition when angiotensin II levels are elevated during several consecutive days. The effects induced by the infusion of either initially subpressor or pressor angiotensin II doses (1 and 5 ng/kg/min) were examined in dogs with or without the simultaneous infusion of meclofenamate (5 microg/kg/min). Experiments were performed in conscious permanently instrumented dogs. Infusion of the lower angiotensin II dose alone (n = 6) caused a late 12+/-2% increase in arterial pressure, a 25+/-6% decrease in renal blood flow (RBF), and a transitory decrease in urinary sodium excretion. COX inhibition reduced the hypertension and renal vasoconstriction, but enhanced the sodium retention, induced by the lower dose angiotensin II infusion (n = 6). The higher angiotensin II dose (n = 6) caused a 25+/-4% increase in arterial pressure, a 24+/-5% decrease in RBF, and a transitory decrease in urinary sodium excretion. Finally, COX inhibition did not modify the renal effects elicited by the higher angiotensin II dose (n = 6). The results of this study suggest that endogenous prostaglandins play an important role in the regulation of the renal and systemic changes induced by prolonged administration of initially subpressor angiotensin II doses. It has also been demonstrated that prolonged COX inhibition does not modify the renal functional and hemodynamic changes elicited by the long-term infusion of a pressor angiotensin II dose.

Collaboration


Dive into the Francisca Rodríguez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol Moreno

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernardo Lopez

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge