Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco A. Culiáñez-Macià is active.

Publication


Featured researches published by Francisco A. Culiáñez-Macià.


Planta | 1997

Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance

Carlos Romero; José M. Bellés; José L. Vayá; Ramón Serrano; Francisco A. Culiáñez-Macià

The yeast trehalose-6-phosphate synthase gene (TPS1) was engineered under the control of the cauliflower mosaic virus regulatory sequences (CaMV35S) for expression in plants. Using Agrobacterium-mediated transfer, the gene was incorporated into the genomic DNA and constitutively expressed in Nicotiana tabacum L. plants. Trehalose was determined in the transformants, by anion-exchange chromatography coupled to pulsed amperometric detection. The non-reducing disaccharide accumulated up to 0.17 mg per g fresh weight in leaf extracts of transgenic plants. Trehaloseaccumulating plants exhibited multiple phenotypic alterations, including stunted growth, lancet-shaped leaves, reduced sucrose content and improved drought tolerance. These pleiotropic effects, and the fact that water loss from detached leaves was not significantly affected by trehalose accumulation, suggest that synthesis of this sugar, rather than leading to an osmoprotectant effect, had altered sugar metabolism and regulatory pathways affecting plant development and stress tolerance.


The Plant Cell | 1996

A major isoform of the maize plasma membrane H(+)-ATPase: characterization and induction by auxin in coleoptiles.

Ignacio Frias; Maria T. Caldeira; José R. Pérez-Castiñeira; Juan P. Navarro-Avino; Francisco A. Culiáñez-Macià; Oliver Kuppinger; Harald Stransky; Montserrat Pagès; Achim Hager; Ramón Serrano

The plasma membrane (PM) H(+)-ATPase has been proposed to play important transport and regulatory roles in plant physiology, including its participation in auxin-induced acidification in coleoptile segments. This enzyme is encoded by a family of genes differing in tissue distribution, regulation, and expression level. A major expressed isoform of the maize PM H(+)-ATPase (MHA2) has been characterized. RNA gel blot analysis indicated that MHA2 is expressed in all maize organs, with highest levels being in the roots. In situ hybridization of sections from maize seedlings indicated enriched expression of MHA2 in stomatal guard cells, phloem cells, and root epidermal cells. MHA2 mRNA was induced threefold when nonvascular parts of the coleoptile segments were treated with auxin. This induction correlates with auxin-triggered proton extrusion by the same part of the segments. The PM H(+)-ATPase in the vascular bundies does not contribute significantly to auxin-induced acidification, is not regulated by auxin, and masks the auxin effect in extracts of whole coleoptile segments. We conclude that auxin-induced acidification in coleoptile segments most often occurs in the nonvascular tissue and is mediated, at least in part, by increased levels of MHA2.


Plant Molecular Biology | 1998

The expression of a peroxiredoxin antioxidant gene, AtPer1, in Arabidopsis thaliana is seed-specific and related to dormancy

Camilla Haslekås; Robin A. P. Stacy; Vigdis Nygaard; Francisco A. Culiáñez-Macià; Reidunn B. Aalen

We have isolated a gene, AtPer1, from the dicotyledon Arabidopsis thaliana, which shows similarity to the 1-cysteine (1-Cys) peroxiredoxin family of antioxidants. In higher plants, members of this group of antioxidants have previously only been isolated from monocotyledons. It has been suggested that seed peroxiredoxins protect tissues from reactive oxygen species during desiccation and early imbibition and/or are involved in the maintenance of/protection during dormancy. AtPer1 expression is restricted to seeds. Despite differences in seed development between monocots and dicots, AtPer1 shows an expression pattern during seed development and germination similar to the dormancy-related transcript Per1 in barley. In situ hybridization identifies AtPer1 as the first aleurone-expressed transcript characterized in developing Arabidopsis seeds. The transcript is also expressed in the embryo. AtPer1 expression in seeds is unaltered in an ABA-deficient mutant (aba-1) during seed development, while expression in seeds of an ABA-insensitive mutant (abi3-1) is reduced. The transcript is not induced in vegetative tissue in response to stress by ABA or drought. AtPer1 transcript levels are correlated to germination frequencies of wildtype seeds, but AtPer1 transcript abundance is not sufficient for expression of dormancy in non-dormant mutants. Hypotheses on peroxiredoxin function are discussed in view of the results presented here.


Plant Cell Tissue and Organ Culture | 2004

Tomato transformation and transgenic plant production

Carolina Cortina; Francisco A. Culiáñez-Macià

Tomato transformation and regeneration were analysed and optimized. Cotyledon explants from Lycopersicon esculentum cv. UC82B, were infected by Agrobacterium tumefaciens strain LBA4404 harbouring the neomycin phosphotransferase (NPTII) reporter gene. The effects of phenolic compounds, vitamins and growth regulators on plant transformation and regeneration were studied. Increasing the vitamin thiamine concentration from 0.1 mg l−1 in standard medium to 0.4 mg l−1 decreased the chlorophyll lost that accompanied the expansion of necrotic areas in cotyledon explants. Optimal shoot regeneration rate was obtained with a balanced concentration of 0.5 mg l−1 auxin indolelacetic acid (IAA) and 0.5 mg l−1 cytokinin zeatin riboside. Finally, when the phenolic acetosyringone was present in the co-culture medium at 200 µM, confirmed transgenic lines reached 50% of antibiotic resistant shoots. Under the above conditions, the transformation efficiency reached 12.5%.


Journal of Biological Chemistry | 2003

4′-Phosphopantetheine and Coenzyme A Biosynthesis in Plants

Thomas Kupke; Pilar Hernández-Acosta; Francisco A. Culiáñez-Macià

Coenzyme A is required for many synthetic and degradative reactions in intermediary metabolism and is the principal acyl carrier in prokaryotic and eukaryotic cells. Coenzyme A is synthesized in five steps from pantothenate, and recently the CoaA biosynthetic genes in bacteria and human have all been identified and characterized. Coenzyme A biosynthesis in plants is not fully understood, and to date only the AtHAL3a (AtCoaC) gene of Arabidopsis thaliana has been cloned and identified as 4′-phosphopantothenoylcysteine (PPC) decarboxylase (Kupke, T., Hernández-Acosta, P., Steinbacher, S., and Culiáñez-Macià, F. A. (2001) J. Biol. Chem. 276, 19190–19196). Here, we demonstrate the cloning of the four missing genes, purification of the enzymes, and identification of their functions. In contrast to bacterial PPC synthetases, the plant synthetase is not CTP-but ATP-dependent. The complete biosynthetic pathway from pantothenate to coenzyme A was reconstituted in vitro by adding the enzymes pantothenate kinase (AtCoaA), 4′-phosphopantothenoylcysteine synthetase (AtCoaB), 4′-phosphopantothenoylcysteine decarboxylase (AtCoaC), 4′-phosphopantetheine adenylyltransferase (AtCoaD), and dephospho-coenzyme A kinase (AtCoaE) to a mixture containing pantothenate, cysteine, ATP, dithiothreitol, and Mg2+.


Structure | 2000

The X-ray structure of the FMN-binding protein AtHal3 provides the structural basis for the activity of a regulatory subunit involved in signal transduction

Armando Albert; Martín Martínez-Ripoll; Ana Espinosa-Ruiz; Lynne Yenush; Francisco A. Culiáñez-Macià; Ramón Serrano

BACKGROUND The Arabidopsis thaliana HAL3 gene product encodes for an FMN-binding protein (AtHal3) that is related to plant growth and salt and osmotic tolerance. AtHal3 shows sequence homology to ScHal3, a regulatory subunit of the Saccharomyces cerevisae serine/threonine phosphatase PPz1. It has been proposed that AtHal3 and ScHal3 have similar roles in cellular physiology, as Arabidopsis transgenic plants that overexpress AtHal3 and yeast cells that overexpress ScHal3 display similar phenotypes of improved salt tolerance. The enzymatic activity of AtHal3 has not been investigated. However, the AtHal3 sequence is homologous to that of EpiD, a flavoprotein from Staphylococcus epidermidis that recognizes a peptidic substrate and subsequently catalyzes the alpha, beta-dehydrogenation of its C-terminal cysteine residue. RESULTS The X-ray structure of AtHal3 at 2 A resolution reveals that the biological unit is a trimer. Each protomer adopts an alpha/beta Rossmann fold consisting of a six-stranded parallel beta sheet flanked by two layers of alpha helices. The FMN-binding site of AtHal3 contains all the structural requirements of the flavoenzymes that catalyze dehydrogenation reactions. Comparison of the amino acid sequences of AtHal3, ScHal3 and EpiD reveals that a significant number of residues involved in trimer formation, the active site, and FMN binding are conserved. This observation suggests that ScHal3 and EpiD might also be trimers, having a similar structure and function to AtHal3. CONCLUSIONS Structural comparisons of AtHal3 with other FMN-binding proteins show that AtHal3 defines a new subgroup of this protein family that is involved in signal transduction. Analysis of the structure of AtHal3 indicates that this protein is designed to interact with another cellular component and to subsequently catalyze the alpha,beta-dehydrogenation of a peptidyl cysteine. Structural data from AtHal3, together with physiological and biochemical information from ScHal3 and EpiD, allow us to propose a model for the recognition and regulation of AtHal3/ScHal3 cellular partners.


Plant Molecular Biology | 2002

Arabidopsis thaliana atrab28: a nuclear targeted protein related to germination and toxic cation tolerance.

Antonio Borrell; M. Cruz Cutanda; Victoria Lumbreras; Judit Pujal; Adela Goday; Francisco A. Culiáñez-Macià; Montserrat Pagès

The Arabidopsis gene Atrab28 has been shown to be expressed during late embryogenesis. The pattern of expression of Atrab28 mRNA and protein during embryo development is largely restricted to provascular tissues of mature embryos, and in contrast to the maize Rab28 homologue it cannot be induced by ABA and dehydration in vegetative tissues.Here, we have studied the subcellular location of Atrab28 protein and the effect of its over-expression in transgenic Arabidopsis plants. The Atrab28 protein was mainly detected in the nucleus and nucleolus of cells from mature embryos. In frame fusion of Atrab28 to the reporter green fluorescent protein (GFP) directed the GFP to the nucleus in transgenic Arabidopsis and in transiently transformed onion cells. Analysis of chimeric constructs identified an N-terminal region of 60 amino acids containing a five amino acid motif QPKRP that was necessary for targeting GFP to the nucleus. These results indicate that Atrab28 protein is targeted to the nuclear compartments by a new nuclear localization signal (NLS). Transgenic Arabidopsis plants, with gain of Atrab28 function, showed faster germination rates under either standard or salt and osmotic stress conditions. Moreover, improved cation toxicity tolerance was also observed not only during germination but also in seedlings. These results suggest a role of Atrab28 in the ion cell balance during late embryogenesis and germination.


Journal of Biological Chemistry | 2002

Molecular Characterization of the Arabidopsis thaliana Flavoprotein AtHAL3a Reveals the General Reaction Mechanism of 4-Phosphopantothenoylcysteine Decarboxylases*

Pilar Hernández-Acosta; Dietmar G. Schmid; Günther Jung; Francisco A. Culiáñez-Macià; Thomas Kupke

The Arabidopsis thaliana flavoprotein AtHAL3a, which is linked to plant growth and salt and osmotic tolerance, catalyzes the decarboxylation of 4′-phosphopantothenoylcysteine to 4′-phosphopantetheine, a key step in coenzyme A biosynthesis. AtHAL3a is similar in sequence and structure to the LanD enzymes EpiD and MrsD, which catalyze the oxidative decarboxylation of peptidylcysteines. Therefore, we hypothesized that the decarboxylation of 4′-phosphopantothenoylcysteine also occurs via an oxidatively decarboxylated intermediate containing an aminoenethiol group. A set of AtHAL3a mutants were analyzed to detect such an intermediate. By exchanging Lys34, we found that AtHAL3a is not only able to decarboxylate 4′-phosphopantothenoylcysteine but also pantothenoylcysteine to pantothenoylcysteamine. Exchanging residues within the substrate binding clamp of AtHAL3a (for example of Gly179) enabled the detection of the proposed aminoenethiol intermediate when pantothenoylcysteine was used as substrate. This intermediate was characterized by its high absorbance at 260 and 280 nm, and the removal of two hydrogen atoms and one molecule of CO2 was confirmed by ultrahigh resolution mass spectrometry. Using the mutant AtHAL3a C175S enzyme, the product pantothenoylcysteamine was not detectable; however, oxidatively decarboxylated pantothenoylcysteine could be identified. This result indicates that reduction of the aminoenethiol intermediate depends on a redox-active cysteine residue in AtHAL3a.


Molecular Genetics and Genomics | 2011

Phylogenetic and genetic linkage between novel atypical dual-specificity phosphatases from non-metazoan organisms

Carlos Romá-Mateo; Almudena Sacristán-Reviriego; Nicola J. Beresford; José Antonio Caparrós-Martín; Francisco A. Culiáñez-Macià; Humberto Martín; María Molina; Lydia Tabernero; Rafael Pulido

Dual-specificity phosphatases (DSPs) constitute a large protein tyrosine phosphatase (PTP) family, with examples in distant evolutive phyla. PFA-DSPs (Plant and Fungi Atypical DSPs) are a group of atypical DSPs present in plants, fungi, kinetoplastids, and slime molds, the members of which share structural similarity with atypical- and lipid phosphatase DSPs from mammals. The analysis of the PFA-DSPs from the plant Arabidopsis thaliana (AtPFA-DSPs) showed differential tissue mRNA expression, substrate specificity, and catalytic activity for these proteins, suggesting different functional roles among plant PFA-DSPs. Bioinformatic analysis revealed the existence of novel PFA-DSP-related proteins in fungi (Oca1, Oca2, Oca4 and Oca6 in Saccharomyces cerevisiae) and protozoa, which were segregated from plant PFA-DSPs. The closest yeast homolog for these proteins was the PFA-DSP from S. cerevisiae ScPFA-DSP1/Siw14/Oca3. Oca1, Oca2, Siw14/Oca3, Oca4, and Oca6 were involved in the yeast response to caffeine and rapamycin stresses. Siw14/Oca3 was an active phosphatase in vitro, whereas no phosphatase activity could be detected for Oca1. Remarkably, overexpression of Siw14/Oca3 suppressed the caffeine sensitivity of oca1, oca2, oca4, and oca6 deleted strains, indicating a genetic linkage and suggesting a functional relationship for these proteins. Functional studies on mutations targeting putative catalytic residues from the A. thaliana AtPFA-DSP1/At1g05000 protein indicated the absence of canonical amino acids acting as the general acid/base in the phosphor-ester hydrolysis, which suggests a specific mechanism of reaction for PFA-DSPs and related enzymes. Our studies demonstrate the existence of novel phosphatase protein families in fungi and protozoa, with active and inactive enzymes linked in common signaling pathways. This illustrates the catalytic and functional complexity of the expanding family of atypical dual-specificity phosphatases in non-metazoans, including parasite organisms responsible for infectious human diseases.


Plant Science | 2016

Molecular characterization of maize bHLH transcription factor (ZmKS), a new ZmOST1 kinase substrate.

Agnese Rabissi; Belmiro Vilela; Victoria Lumbreras; Dolors Ludevid; Francisco A. Culiáñez-Macià; Montserrat Pagès

In order to identify potential substrates of the maize kinase in the ABA signalling network, ZmOST1 was used as bait against a library of cDNAs from dehydrated young leaves. A ZmOST1-interactive polypeptide ZmKS (gene locus tag: GRMZM2G114873), showing homology with the Arabidopsis thaliana basic helix-loop-helix (bHLH) DNA-binding transcription factor was identified. Using a comparative genomic approach, the ZmKS corresponding protein was identified as conceptual translated bHLH transcription factor ABA-responsive kinase substrate. ZmKS is localized in the nucleus, shows a potential binding specificity preferentially detectable on cis-acting E-box like heptameric motifs CCACTTG and CAAGTTG, and is phosphorylated by maize protein kinase ZmOST1. ZmKS is expressed in embryo, leaf and root, expression being affected by ABA and osmotic stress. Transgenic Arabidopsis plants, with gain of ZmKS function, show a delay in germination and a transcriptional stomatal opening-facilitator activity, switchover upon ZmKS phosphorylation, suggesting that ZmKS is an ABA-repressed trans-acting activator.

Collaboration


Dive into the Francisco A. Culiáñez-Macià's collaboration.

Top Co-Authors

Avatar

Carlos Romero

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Carolina Cortina

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Ramón Serrano

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Montserrat Pagès

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Pilar Hernández-Acosta

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Mari Cruz Cutanda

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Ana Espinosa-Ruiz

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Iva McCarthy-Suárez

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Thomas Kupke

University of Tübingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge