Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco Aboitiz is active.

Publication


Featured researches published by Francisco Aboitiz.


Brain Research | 1992

Fiber composition of the human corpus callosum

Francisco Aboitiz; Arnold B. Scheibel; Robin S. Fisher; Eran Zaidel

The densities of fibers of different sizes were calculated in ten regions of the corpus callosum of twenty human brains (ten females, ten males). Light microscopic examination revealed a consistent pattern of regional differentiation of fiber types in the corpus callosum. Thin fibers are most dense in the anterior corpus callosum (genu), and decrease in density posteriorly towards the posterior midbody, where they reach a minimum. Towards the posterior corpus callosum (splenium), the density of thin fibers increases again, but in the posterior pole of the callosum the density decreases locally. Large-diameter fibers show a pattern complementary to that of thin fibers, having a peak of density in the posterior midbody and a local increase of density in the posterior pole of the corpus callosum. Across subjects, the overall density of callosal fibers had no significant correlation with callosal area and an increased callosal area indicated an increased total number of fibers crossing through. Considering different fiber sizes, this was only true for small diameter fibers, whose large majority is believed to interconnect association cortex. No sex differences in fiber composition of the corpus callosum were found.


Brain Research Reviews | 1997

The evolutionary origin of the language areas in the human brain. A neuroanatomical perspective.

Francisco Aboitiz; V Ricardo Garcı́a

The capacity to learn syntactic rules is a hallmark of the human species, but whether this has been acquired by the process of natural selection has been the subject of controversy. Furthermore, the cortical localization of linguistic capacities has prompted some authors to suggest a modular representation of language in the brain. In this paper, we rather propose that the neural device involved in language is embedded into a large-scale neurocognitive network comprising widespread connections between the temporal, parietal and frontal (especially prefrontal) cortices. This network is involved in the temporal organization of behavior and motor sequences, and in working (active) memory, a sort of short-term memory that participates in immediate cognitive processing. In human evolution, a precondition for language was the establishment of strong cortico-cortical interactions in the postrolandic cortex that enabled the development of multimodal associations. Wernickes area originated as a converging place in which such associations (concepts) acquired a phonological correlate. We postulate that these phonological representations projected into inferoparietal areas, which were connected to the incipient Brocas area, thus forming a working memory circuit for processing and learning complex vocalizations. As a result of selective pressure for learning capacity and memory storage, this device yielded a sophisticated system able to generate complicated utterances (precursors of syntax) as it became increasingly connected with other brain regions, especially in the prefrontal cortex. This view argues for a gradual origin of the neural substrate for language as required by natural selection.


Brain Research | 1992

Individual differences in brain asymmetries and fiber composition in the human corpus callosum.

Francisco Aboitiz; Arnold B. Scheibel; Robin S. Fisher; Eran Zaidel

There have been several recent reports concerning individual differences in the gross morphometry of the human corpus callosum. However, no studies exist on individual differences in the fiber composition of the corpus callosum. Here we report for the first time the relation of fiber composition in specific callosal segments (as seen in light microscopy) to anatomical asymmetries in language-gifted cortex, as a function of sex. We found a significant negative correlation between Sylvian fissure asymmetries and the total numbers of fibers in the isthmus of males, and in the anterior splenium of females. In addition, a population of relatively large fibers (between 1 micron and 3 microns in diameter) in the isthmus showed a strong negative correlation with perisylvian asymmetries only in males. These findings suggest a sex-dependent, pathway-specific decrease in interhemispheric connectivity with increasing lateralization.


Brain Behavior and Evolution | 2001

Species Differences and Similarities in the Fine Structure of the Mammalian Corpus callosum

Ricardo Olivares; Juan Montiel; Francisco Aboitiz

A cross-species ultrastructural study of the corpus callosum was performed in six domestic species: the rat, the rabbit, the cat, the dog, the horse and the cow. The results indicate cross-species conservatism in callosal fiber composition with a good interspecies relation between fiber number and brain size. Across species, increases in both brain size and callosal area indicate more callosal fibers, although less than expected from the estimated increase in cortical cell number. Within each species, the correlation between fiber number and brain weight tends to disappear, although in most cases a larger callosum implies a larger number of callosal fibers. The median fiber diameter was conservative across species (0.11–0.2 µm), indicating the maintenance of conduction velocity of most callosal fibers regardless of interhemispheric distance. Nevertheless, the maximal fiber diameters tended to be higher in species with larger brains. Therefore, there is a population of coarse-diameter fibers that tend to increase their diameter and conduction velocity with increasing brain size. However, allometric calculations suggest that the associated increase in velocity in these large fibers may not be sufficient to maintain a constant interhemispheric transmission time in different species.


Brain Behavior and Evolution | 1996

Does bigger mean better? Evolutionary determinants of brain size and structure.

Francisco Aboitiz

Current perspectives on brain evolution relate brain size variability to two main parameters: a scaling factor that corresponds to overall body size and an ecological factor associated with behavioral capacity. I suggest in this paper that in evolution body weight and ecological conditions have different effects on brain structure, resulting in distinct differences in neural architecture, even if both factors may produce brain size increases. There are two postulated modalities of brain growth, one passive that lags behind increases in body size, and one active that relates to selection of specific behavioral abilities and hence increased processing capacity. These two modes of growth differ in three main aspects: (i) cellular and connectional rearrangements are modest in passive brain growth while they are conspicuous in active growth, corresponding to increases in processing capacity; (ii) passive brain growth follows a rather conservative allometric rule between brain components, while active growth usually affects only a few brain parts, thereby producing much steeper allometric relations between these parts and sometimes also in brain/body relations; and (iii) passive growth may either affect early periods of ontogenic brain development or produce a generalized increase in cell proliferation in later periods. On the other hand, active growth is restricted to relatively late developmental periods. Finally, an evolutionary scenario for the active mode is proposed where phylogenetic selection of an increased number of cells in particular brain regions occurs in order to facilitate neural reorganization and to increase the specificity of connections. This view emphasizes the role of connectional modifications in increasing brain capacity and contrasts with current ideas of a unitary process of phylogenetic brain growth, where a larger brain size per se produces better processing capacity, regardless of the causal factor behind it.


The Journal of Comparative Neurology | 1999

Hemispheric differences in variability of fissural patterns in parasylvian and cingulate regions of human brains

Andrés Ide; Carlos Dolezal; Mauricio Fernández; Eduardo Labbé; Rodrigo Mandujano; Soledad Montes; Paola Segura; Gregorio Verschae; Paula Yarmuch; Francisco Aboitiz

We have determined different patterns of fissurization in Brocas area, the gyrus of Heschl, the planum temporale, the inferior parietal lobe, and the cingulate sulcus. Such patterns were asymmetrically distributed, indicating increased folding on the left side in most cases. More folding can sometimes be related to a larger cortical area, resulting in increased processing capacities in the respective brain region. Furthermore, the brain regions associated with the asymmetrical sulci are involved in lateralized functions. Of special interest are the asymmetries observed in regions corresponding to the inferior parietal lobe (the accessory postcentral sulcus and the intraparietal sulcus), which, according to recent studies, is involved in linguistic working memory. We did not detect a tendency of distinct fissurization patterns in a given brain region to be associated with specific patterns in other fissures, indicating that the different fissure types develop independently in each brain region and can therefore be determined by local processes. These descriptions are of relevance to imaging studies that intend to establish correspondences between gross morphology and functional parameters such as behavior and brain activation. J. Comp. Neurol. 410:235–242, 1999.


Pharmacology, Biochemistry and Behavior | 2004

Behavioral effects of manganese injected in the rat substantia nigra are potentiated by dicumarol, a DT-diaphorase inhibitor

Gabriela Díaz-Véliz; Sergio Mora; Patricia Gómez; Ma Teresa Dossi; Juan Montiel; Christian Arriagada; Francisco Aboitiz; Juan Segura-Aguilar

The purpose of this study was to evaluate the contribution of DT-diaphorase inhibition to in vivo neurodegenerative effects of dopamine (DA) oxidation to the corresponding o-quinones. The neurotoxicity to nigrostriatal DA neurons was induced by injection of manganese pyrophosphate (Mn(3+)) complex as a prooxidizing agent alone or together with the DT-diaphorase inhibitor dicumarol into the right rat substantia nigra. The behavioral effects were compared with those induced after selective lesions of dopaminergic neurons with 6-hydroxydopamine (6-OHDA). Intranigral injection of Mn(3+) and Mn(3+) plus dicumarol produced significant impairment in motor behavior compared with control animals. However, the effect seen in the Mn(3+) plus dicumarol injected group was significantly more severe than that observed in the Mn(3+) alone injected group. In motor activity and rearing behavior, the simultaneous injection of Mn(3+) plus dicumarol produced a 6-OHDA-like impairment. Similar effects were observed in the acquisition of a conditioned avoidance response (CAR). Dicumarol significantly impaired avoidance conditioning although without affecting the motor behavior. The behavioral effects were correlated to the extent of striatal tyrosine hydroxylase (TH)-positive fiber loss. Rats receiving unilateral intranigral Mn(3+) and Mn(3+) plus dicumarol injections exhibited a significant reduction in nigrostriatal TH-positive fiber density in medial forebrain bundle compared with the contralateral noninjected side. In conclusion, this study provides evidence that the neurotoxicity of Mn(3+) in vivo is potentiated by DT-diaphorase inhibition, suggesting that this enzyme could play a neuroprotective role in the nigrostriatal DA systems.


Brain Research Reviews | 2002

Evolutionary divergence of the reptilian and the mammalian brains: considerations on connectivity and development.

Francisco Aboitiz; Juan Montiel; Daniver Morales; Miguel L. Concha

The isocortex is a distinctive feature of the mammalian brain, with no clear counterpart in other amniotes. There have been long controversies regarding possible homologues of this structure in reptiles and birds. The brains of the latter are characterized by the presence of a structure termed dorsal ventricular ridge (DVR), which receives ascending auditory and visual projections, and has been postulated to be homologous to parts of the mammalian isocortex (i.e., the auditory and the extrastriate visual cortices). Dissenting views, now supported by molecular evidence, claim that the DVR originates from a region termed ventral pallium, while the isocortex may arise mostly from the dorsal pallium (in mammals, the ventral pallium relates to the claustroamygdaloid complex). Although it is possible that in mammals the embryonic ventral pallium contributes cells to the developing isocortex, there is no evidence yet supporting this alternative. The possibility is raised that the expansion of the cerebral cortex in the origin of mammals was product of a generalized dorsalizing influence in pallial development, at the expense of growth in ventral pallial regions. Importantly, the evidence suggests that organization of sensory projections is significantly different between mammals and sauropsids. In reptiles and birds, some sensory pathways project to the ventral pallium and others project to the dorsal pallium, while in mammals sensory projections end mainly in the dorsal pallium. We suggest a scenario for the origin of the mammalian isocortex which relies on the development of associative circuits between the olfactory, the dorsal and the hippocampal cortices in the earliest mammals.


Brain Behavior and Evolution | 2000

Cross-Species and Intraspecies Morphometric Analysis of the Corpus Callosum

Ricardo Olivares; Susana Michalland; Francisco Aboitiz

A cross-species morphometric study of the corpus callosum was performed in the rat, rabbit, cat, dog, horse, cow and human. Across species, the results indicate a strong, although less than linear, dependency of callosal size on brain weight. This relation tends to lose significance within species. This is consistent with other morphometric studies indicating a tendency to decrease the correlations between morphometric variables in within-species analyses as compared to between-species analyses. There are species differences in the relative size of some callosal segments particularly in the posterior third, which is larger in frontally-looking species than in laterally-looking species. No sex differences in callosal size were detected in any of the species examined. These findings are discussed in the light of possible developmental and functional correlates of the variability observed.


Brain Research Reviews | 2001

The inverted neurogenetic gradient of the mammalian isocortex: development and evolution.

Francisco Aboitiz; Daniver Morales; Juan Montiel

In this paper we review recent evidence on the molecular control of cell migration in the isocortex, and present an hypothesis for the evolutionary origin of the inside-out neurogenetic gradient of this structure. We suggest that there are at least two key factors involved in the acquisition of the inside-out gradient: (i) the expression of the protein reelin, which arrests the migration of cortical plate cells by detaching them from the radial glial fiber. This permits younger neurons to use the same fiber to migrate past the previous neurons; and (ii) the second factor is an intracellular signaling pathway dependent on a cyclin-dependent protein kinase (Cdk5). Cdk5 may work by inhibiting N-cadherin mediated cell aggregation as young cells cross the cortical plate, permitting them to move to the more superficial layers. Interestingly, the mutation in Cdk5 affects the migration of only those cells belonging to superficial layers, which are considered to be an evolutionary acquisition of the mammalian isocortex.

Collaboration


Dive into the Francisco Aboitiz's collaboration.

Top Co-Authors

Avatar

Juan Montiel

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eran Zaidel

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge