Francisco Altamirano
University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francisco Altamirano.
Journal of Endocrinology | 2009
Francisco Altamirano; Cesar Oyarce; Patricio Silva; Marcela Toyos; Carlos Pizarro Wilson; Sergio Lavandero; Per Uhlén; Manuel Estrada
Elevated testosterone concentrations induce cardiac hypertrophy but the molecular mechanisms are poorly understood. Anabolic properties of testosterone involve an increase in protein synthesis. The mammalian target of rapamycin complex 1 (mTORC1) pathway is a major regulator of cell growth, but the relationship between testosterone action and mTORC1 in cardiac cells remains unknown. Here, we investigated whether the hypertrophic effects of testosterone are mediated by mTORC1 signaling in cultured cardiomyocytes. Testosterone increases the phosphorylation of mTOR and its downstream targets 40S ribosomal protein S6 kinase 1 (S6K1; also known as RPS6KB1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). The S6K1 phosphorylation induced by testosterone was blocked by rapamycin and small interfering RNA to mTOR. Moreover, the hormone increased both extracellular-regulated kinase (ERK1/2) and protein kinase B (Akt) phosphorylation. ERK1/2 inhibitor PD98059 blocked the testosterone-induced S6K1 phosphorylation, whereas Akt inhibition (Akt-inhibitor-X) had no effect. Testosterone-induced ERK1/2 and S6K1 phosphorylation increases were blocked by either 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid-acetoxymethylester or by inhibitors of inositol 1,4,5-trisphosphate (IP(3)) pathway: U-73122 and 2-aminoethyl diphenylborate. Finally, cardiomyocyte hypertrophy was evaluated by, the expression of beta-myosin heavy chain, alpha-skeletal actin, cell size, and amino acid incorporation. Testosterone increased all four parameters and the increase being blocked by mTOR inhibition. Our findings suggest that testosterone activates the mTORC1/S6K1 axis through IP(3)/Ca(2+) and MEK/ERK1/2 to induce cardiomyocyte hypertrophy.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Jose M. Eltit; Roger A. Bannister; Ong Moua; Francisco Altamirano; P.M. Hopkins; Isaac N. Pessah; Tadeusz F. Molinski; Jose R. Lopez; Kurt G. Beam; Paul D. Allen
Malignant hyperthermia (MH) susceptibility is a dominantly inherited disorder in which volatile anesthetics trigger aberrant Ca2+ release in skeletal muscle and a potentially fatal rise in perioperative body temperature. Mutations causing MH susceptibility have been identified in two proteins critical for excitation–contraction (EC) coupling, the type 1 ryanodine receptor (RyR1) and CaV1.1, the principal subunit of the L-type Ca2+ channel. All of the mutations that have been characterized previously augment EC coupling and/or increase the rate of L-type Ca2+ entry. The CaV1.1 mutation R174W associated with MH susceptibility occurs at the innermost basic residue of the IS4 voltage-sensing helix, a residue conserved among all CaV channels [Carpenter D, et al. (2009) BMC Med Genet 10:104–115.]. To define the functional consequences of this mutation, we expressed it in dysgenic (CaV1.1 null) myotubes. Unlike previously described MH-linked mutations in CaV1.1, R174W ablated the L-type current and had no effect on EC coupling. Nonetheless, R174W increased sensitivity of Ca2+ release to caffeine (used for MH diagnostic in vitro testing) and to volatile anesthetics. Moreover, in CaV1.1 R174W-expressing myotubes, resting myoplasmic Ca2+ levels were elevated, and sarcoplasmic reticulum (SR) stores were partially depleted, compared with myotubes expressing wild-type CaV1.1. Our results indicate that CaV1.1 functions not only to activate RyR1 during EC coupling, but also to suppress resting RyR1-mediated Ca2+ leak from the SR, and that perturbation of CaV1.1 negative regulation of RyR1 leak identifies a unique mechanism that can sensitize muscle cells to MH triggers.
Journal of Biological Chemistry | 2012
Francisco Altamirano; Jose R. Lopez; Carlos Henríquez; Tadeusz F. Molinski; Paul D. Allen; Enrique Jaimovich
Background: The mechanisms by which NF-κB signaling is up-regulated in dystrophic muscles are unclear. Results: [Ca2+]rest is elevated in mdx myotubes as a result of both sarcolemmal Ca2+ entry and SR release, resulting in NF-κB-induced iNOS expression. Conclusion: Ca2+ alterations at rest modulate NF-κB transcriptional activity and pro-inflammatory gene expression. Significance: This allows for understanding the mechanism that relates elevated resting calcium and altered gene expression in muscular dystrophy. Duchenne muscular dystrophy (DMD) is a genetic disorder caused by dystrophin mutations, characterized by chronic inflammation and severe muscle wasting. Dystrophic muscles exhibit activated immune cell infiltrates, up-regulated inflammatory gene expression, and increased NF-κB activity, but the contribution of the skeletal muscle cell to this process has been unclear. The aim of this work was to study the pathways that contribute to the increased resting calcium ([Ca2+]rest) observed in mdx myotubes and its possible link with up-regulation of NF-κB and pro-inflammatory gene expression in dystrophic muscle cells. [Ca2+]rest was higher in mdx than in WT myotubes (308 ± 6 versus 113 ± 2 nm, p < 0.001). In mdx myotubes, both the inhibition of Ca2+ entry (low Ca2+ solution, Ca2+-free solution, and Gd3+) and blockade of either ryanodine receptors or inositol 1,4,5-trisphosphate receptors reduced [Ca2+]rest. Basal activity of NF-κB was significantly up-regulated in mdx versus WT myotubes. There was an increased transcriptional activity and p65 nuclear localization, which could be reversed when [Ca2+]rest was reduced. Levels of mRNA for TNFα, IL-1β, and IL-6 were similar in WT and mdx myotubes, whereas inducible nitric-oxide synthase (iNOS) expression was increased 5-fold. Reducing [Ca2+]rest using different strategies reduced iNOS gene expression presumably as a result of decreased activation of NF-κB. We propose that NF-κB, modulated by increased [Ca2+]rest, is constitutively active in mdx myotubes, and this mechanism can account for iNOS overexpression and the increase in reactive nitrogen species that promote damage in dystrophic skeletal muscle cells.
Diabetes | 2013
Cesar Osorio-Fuentealba; Ariel Contreras-Ferrat; Francisco Altamirano; Alejandra Espinosa; Qing Li; Wenyan Niu; Sergio Lavandero; Amira Klip; Enrique Jaimovich
Skeletal muscle glucose uptake in response to exercise is preserved in insulin-resistant conditions, but the signals involved are debated. ATP is released from skeletal muscle by contractile activity and can autocrinely signal through purinergic receptors, and we hypothesized it may influence glucose uptake. Electrical stimulation, ATP, and insulin each increased fluorescent 2-NBD-Glucose (2-NBDG) uptake in primary myotubes, but only electrical stimulation and ATP-dependent 2-NBDG uptake were inhibited by adenosine-phosphate phosphatase and by purinergic receptor blockade (suramin). Electrical stimulation transiently elevated extracellular ATP and caused Akt phosphorylation that was additive to insulin and inhibited by suramin. Exogenous ATP transiently activated Akt and, inhibiting phosphatidylinositol 3-kinase (PI3K) or Akt as well as dominant-negative Akt mutant, reduced ATP-dependent 2-NBDG uptake and Akt phosphorylation. ATP-dependent 2-NBDG uptake was also inhibited by the G protein βγ subunit-interacting peptide βark-ct and by the phosphatidylinositol 3-kinase-γ (PI3Kγ) inhibitor AS605240. ATP caused translocation of GLUT4myc-eGFP to the cell surface, mechanistically mediated by increased exocytosis involving AS160/Rab8A reduced by dominant-negative Akt or PI3Kγ kinase-dead mutants, and potentiated by myristoylated PI3Kγ. ATP stimulated 2-NBDG uptake in normal and insulin-resistant adult muscle fibers, resembling the reported effect of exercise. Hence, the ATP-induced pathway may be tapped to bypass insulin resistance.
Medicine and Science in Sports and Exercise | 2013
Carla Basualto-Alarcón; Gonzalo Jorquera; Francisco Altamirano; Enrique Jaimovich; Manuel Estrada
PURPOSEnThe anabolic hormone testosterone induces muscle hypertrophy, but the intracellular mechanisms involved are poorly known. We addressed the question whether signal transduction pathways other than the androgen receptor (AR) are necessary to elicit hypertrophy in skeletal muscle myotubes.nnnMETHODSnCultured rat skeletal muscle myotubes were preincubated with inhibitors for ERK1/2 (PD98059), PI3K/Akt (LY294002 and Akt inhibitor VIII) or mTOR/S6K1 (rapamycin), and then stimulated with 100 nM testosterone. The expression of α-actin and the phosphorylation levels of ERK1/2, Akt and S6K1 (a downstream target for mTOR) were measured by Western blot. mRNA levels were evaluated by real time RT-PCR. Myotube size and sarcomerization were determined by confocal microscopy. Inhibition of AR was assessed by bicalutamide.nnnRESULTSnTestosterone-induced myotube hypertrophy was assessed as increased myotube cross-sectional area (CSA) and increased α-actin mRNA and α-actin protein levels, with no changes in mRNA expression of atrogenes (MAFbx and MuRF-1). Morphological development of myotube sarcomeres was evident in testosterone-stimulated myotubes. Known hypertrophy signaling pathways were studied at short times: ERK1/2 and Akt showed an increase in phosphorylation status after testosterone stimulus at 5 and 15 min, respectively. S6K1 was phosphorylated at 60 min. This response was abolished by PI3K/Akt and mTOR inhibition but not by ERK1/2 inhibition. Similarly, the CSA increase at 12 h was abolished by inhibitors of the PI3K/Akt pathway as well as by AR inhibition.nnnCONCLUSIONSnThese results suggest a crosstalk between pathways involving fast intracellular signaling and the AR to explain testosterone-induced skeletal muscle hypertrophy.
Journal of Cell Science | 2013
Gonzalo Jorquera; Francisco Altamirano; Ariel Contreras-Ferrat; Gonzalo Almarza; Sonja Buvinic; Vincent Jacquemond; Enrique Jaimovich; Mariana Casas
Summary An important pending question in neuromuscular biology is how skeletal muscle cells decipher the stimulation pattern coming from motoneurons to define their phenotype as slow or fast twitch muscle fibers. We have previously shown that voltage-gated L-type calcium channel (Cav1.1) acts as a voltage sensor for activation of inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3]-dependent Ca2+ signals that regulates gene expression. ATP released by muscle cells after electrical stimulation through pannexin-1 channels plays a key role in this process. We show now that stimulation frequency determines both ATP release and Ins(1,4,5)P3 production in adult skeletal muscle and that Cav1.1 and pannexin-1 colocalize in the transverse tubules. Both ATP release and increased Ins(1,4,5)P3 was seen in flexor digitorum brevis fibers stimulated with 270 pulses at 20u2005Hz, but not at 90u2005Hz. 20u2005Hz stimulation induced transcriptional changes related to fast-to-slow muscle fiber phenotype transition that required ATP release. Addition of 30u2005µM ATP to fibers induced the same transcriptional changes observed after 20u2005Hz stimulation. Myotubes lacking the Cav1.1-&agr;1 subunit released almost no ATP after electrical stimulation, showing that Cav1.1 has a central role in this process. In adult muscle fibers, ATP release and the transcriptional changes produced by 20u2005Hz stimulation were blocked by both the Cav1.1 antagonist nifedipine (25u2005µM) and by the Cav1.1 agonist (-)S-BayK 8644 (10u2005µM). We propose a new role for Cav1.1, independent of its calcium channel activity, in the activation of signaling pathways allowing muscle fibers to decipher the frequency of electrical stimulation and to activate specific transcriptional programs that define their phenotype.
Molecular and Cellular Biology | 2014
Adam R. Burr; Douglas P. Millay; Sanjeewa A. Goonasekera; Ki Ho Park; Michelle A. Sargent; James J. Collins; Francisco Altamirano; Kenneth D. Philipson; Paul D. Allen; Jianjie Ma; Jose R. Lopez; Jeffery D. Molkentin
ABSTRACT Unregulated Ca2+ entry is thought to underlie muscular dystrophy. Here, we generated skeletal-muscle-specific transgenic (TG) mice expressing the Na+-Ca2+ exchanger 1 (NCX1) to model its identified augmentation during muscular dystrophy. The NCX1 transgene induced dystrophy-like disease in all hind-limb musculature, as well as exacerbated the muscle disease phenotypes in δ-sarcoglycan (Sgcd−/−), Dysf−/−, and mdx mouse models of muscular dystrophy. Antithetically, muscle-specific deletion of the Slc8a1 (NCX1) gene diminished hind-limb pathology in Sgcd−/− mice. Measured increases in baseline Na+ and Ca2+ in dystrophic muscle fibers of the hind-limb musculature predicts a net Ca2+ influx state due to reverse-mode operation of NCX1, which mediates disease. However, the opposite effect is observed in the diaphragm, where NCX1 overexpression mildly protects from dystrophic disease through a predicted enhancement in forward-mode NCX1 operation that reduces Ca2+ levels. Indeed, Atp1a2+/− (encoding Na+-K+ ATPase α2) mice, which have reduced Na+ clearance rates that would favor NCX1 reverse-mode operation, showed exacerbated disease in the hind limbs of NCX1 TG mice, similar to treatment with the Na+-K+ ATPase inhibitor digoxin. Treatment of Sgcd−/− mice with ranolazine, a broadly acting Na+ channel inhibitor that should increase NCX1 forward-mode operation, reduced muscular pathology.
Frontiers in Physiology | 2016
Carlos Henríquez-Olguín; Alexis Díaz-Vegas; Yildy Utreras-Mendoza; Cristian Campos; Manuel Arias-Calderón; Paola Llanos; Ariel Contreras-Ferrat; Alejandra Espinosa; Francisco Altamirano; Enrique Jaimovich; Denisse Valladares
Reactive oxygen species (ROS) participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2) in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg) or vehicle for 3 days, were swim-exercised for 60 min. Phospho–p47phox levels were significantly upregulated by exercise in flexor digitorum brevis (FDB). Moreover, exercise significantly increased NOX2 complex assembly (p47phox–gp91phox interaction) demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx), citrate synthase (CS), mitochondrial transcription factor A (tfam) and interleukin-6 (IL-I6) in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p < 0.001). These results were corroborated using gp91-dstat in an in vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise.
Methods of Molecular Biology | 2012
Mariana Casas; Francisco Altamirano; Enrique Jaimovich
Calcium transients elicited by IP(3) receptors upon electrical stimulation of skeletal muscle cells (slow calcium signals) are often hard to visualize due to their relatively small amplitude compared to the large transient originated from ryanodine receptors associated to excitation-contraction coupling. The study of slow calcium transients, however, is relevant due to their function in regulation of muscle gene expression and in the process of excitation-transcription coupling. Discussed here are the procedures used to record slow calcium signals from both cultured mouse myotubes and from cultured adult skeletal muscle fibers.
Circulation Research | 2018
Valentina Parra; Francisco Altamirano; Carolina P. Hernández-Fuentes; Dan Tong; Victoriia Kyrychenko; David Rotter; Zully Pedrozo; Joseph A. Hill; Verónica Eisner; Sergio Lavandero; Jay W. Schneider; Beverly A. Rothermel
Rationale: The regulator of calcineurin 1 (RCAN1) inhibits CN (calcineurin), a Ca2+-activated protein phosphatase important in cardiac remodeling. In humans, RCAN1 is located on chromosome 21 in proximity to the Down syndrome critical region. The hearts and brains of Rcan1 KO mice are more susceptible to damage from ischemia/reperfusion (I/R); however, the underlying cause is not known. Objective: Mitochondria are key mediators of I/R damage. The goal of these studies was to determine the impact of RCAN1 on mitochondrial dynamics and function. Methods and Results: Using both neonatal and isolated adult cardiomyocytes, we show that, when RCAN1 is depleted, the mitochondrial network is more fragmented because of increased CN-dependent activation of the fission protein, DRP1 (dynamin-1-like). Mitochondria in RCAN1-depleted cardiomyocytes have reduced membrane potential, O2 consumption, and generation of reactive oxygen species, as well as a reduced capacity for mitochondrial Ca2+ uptake. RCAN1-depleted cardiomyocytes were more sensitive to I/R; however, pharmacological inhibition of CN, DRP1, or CAPN (calpains; Ca2+-activated proteases) restored protection, suggesting that in the absence of RCAN1, CAPN-mediated damage after I/R is greater because of a decrease in the capacity of mitochondria to buffer cytoplasmic Ca2+. Increasing RCAN1 levels by adenoviral infection was sufficient to enhance fusion and confer protection from I/R. To examine the impact of more modest, and biologically relevant, increases in RCAN1, we compared the mitochondrial network in induced pluripotent stem cells derived from individuals with Down syndrome to that of isogenic, disomic controls. Mitochondria were more fused, and O2 consumption was greater in the trisomic induced pluripotent stem cells; however, coupling efficiency and metabolic flexibility were compromised compared with disomic induced pluripotent stem cells. Depletion of RCAN1 from trisomic induced pluripotent stem cells was sufficient to normalize mitochondrial dynamics and function. Conclusions: RCAN1 helps maintain a more interconnected mitochondrial network, and maintaining appropriate RCAN1 levels is important to human health and disease.