Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco C. Santos is active.

Publication


Featured researches published by Francisco C. Santos.


Nature | 2008

Social diversity promotes the emergence of cooperation in public goods games.

Francisco C. Santos; Marta Santos; Jorge M. Pacheco

Humans often cooperate in public goods games and situations ranging from family issues to global warming. However, evolutionary game theory predicts that the temptation to forgo the public good mostly wins over collective cooperative action, and this is often also seen in economic experiments. Here we show how social diversity provides an escape from this apparent paradox. Up to now, individuals have been treated as equivalent in all respects, in sharp contrast with real-life situations, where diversity is ubiquitous. We introduce social diversity by means of heterogeneous graphs and show that cooperation is promoted by the diversity associated with the number and size of the public goods game in which each individual participates and with the individual contribution to each such game. When social ties follow a scale-free distribution, cooperation is enhanced whenever all individuals are expected to contribute a fixed amount irrespective of the plethora of public goods games in which they engage. Our results may help to explain the emergence of cooperation in the absence of mechanisms based on individual reputation and punishment. Combining social diversity with reputation and punishment will provide instrumental clues on the self-organization of social communities and their economical implications.


PLOS Computational Biology | 2006

Cooperation Prevails When Individuals Adjust Their Social Ties

Francisco C. Santos; Jorge M. Pacheco; Tom Lenaerts

Conventional evolutionary game theory predicts that natural selection favours the selfish and strong even though cooperative interactions thrive at all levels of organization in living systems. Recent investigations demonstrated that a limiting factor for the evolution of cooperative interactions is the way in which they are organized, cooperators becoming evolutionarily competitive whenever individuals are constrained to interact with few others along the edges of networks with low average connectivity. Despite this insight, the conundrum of cooperation remains since recent empirical data shows that real networks exhibit typically high average connectivity and associated single-to-broad–scale heterogeneity. Here, a computational model is constructed in which individuals are able to self-organize both their strategy and their social ties throughout evolution, based exclusively on their self-interest. We show that the entangled evolution of individual strategy and network structure constitutes a key mechanism for the sustainability of cooperation in social networks. For a given average connectivity of the population, there is a critical value for the ratio W between the time scales associated with the evolution of strategy and of structure above which cooperators wipe out defectors. Moreover, the emerging social networks exhibit an overall heterogeneity that accounts very well for the diversity of patterns recently found in acquired data on social networks. Finally, heterogeneity is found to become maximal when W reaches its critical value. These results show that simple topological dynamics reflecting the individual capacity for self-organization of social ties can produce realistic networks of high average connectivity with associated single-to-broad–scale heterogeneity. On the other hand, they show that cooperation cannot evolve as a result of “social viscosity” alone in heterogeneous networks with high average connectivity, requiring the additional mechanism of topological co-evolution to ensure the survival of cooperative behaviour.


Proceedings of the Royal Society of London B: Biological Sciences | 2006

Graph topology plays a determinant role in the evolution of cooperation

Francisco C. Santos; J.F Rodrigues; Jorge M. Pacheco

We study the evolution of cooperation in communities described in terms of graphs, such that individuals occupy the vertices and engage in single rounds of the Prisoners Dilemma with those individuals with whom they are connected through the edges of those graphs. We find an overwhelming dominance of cooperation whenever graphs are dynamically generated through the mechanisms of growth and preferential attachment. These mechanisms lead to the appearance of direct links between hubs, which constitute sufficient conditions to sustain cooperation. We show that cooperation dominates from large population sizes down to communities with nearly 100 individuals, even when extrinsic factors set a limit on the number of interactions that each individual may engage in.


Proceedings of the Royal Society of London B: Biological Sciences | 2009

Evolutionary dynamics of collective action in N-person stag hunt dilemmas

Jorge M. Pacheco; Francisco C. Santos; Max O. Souza; Brian Skyrms

In the animal world, collective action to shelter, protect and nourish requires the cooperation of group members. Among humans, many situations require the cooperation of more than two individuals simultaneously. Most of the relevant literature has focused on an extreme case, the N-person Prisoners Dilemma. Here we introduce a model in which a threshold less than the total group is required to produce benefits, with increasing participation leading to increasing productivity. This model constitutes a generalization of the two-person stag hunt game to an N-person game. Both finite and infinite population models are studied. In infinite populations this leads to a rich dynamics that admits multiple equilibria. Scenarios of defector dominance, pure coordination or coexistence may arise simultaneously. On the other hand, whenever one takes into account that populations are finite and when their size is of the same order of magnitude as the group size, the evolutionary dynamics is profoundly affected: it may ultimately invert the direction of natural selection, compared with the infinite population limit.


Journal of Evolutionary Biology | 2006

A new route to the evolution of cooperation

Francisco C. Santos; Jorge M. Pacheco

The Prisoners Dilemma (PD) constitutes a widely used metaphor to investigate problems related to the evolution of cooperation. Whenever evolution takes place in well‐mixed populations engaged in single rounds of the PD, cooperators cannot resist invasion by defectors, a feature, which is somewhat alleviated whenever populations are spatially distributed. In both cases the populations are characterized by a homogeneous pattern of connectivity, in which every individual is equivalent, sharing the same number of neighbours. Recently, compelling evidence has been accumulated on the strong heterogeneous nature of the network of contacts between individuals in populations. Here we describe the networks of contacts in terms of graphs and show that heterogeneity provides a new mechanism for cooperation to survive. Specifically, we show that cooperators are capable of exploring the heterogeneity of the population structure to become evolutionary competitive. As a result, cooperation becomes the dominating trait in scale‐free networks of contacts in which the few highly connected individuals are directly inter‐connected, in this way contributing to self‐sustain cooperation.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Risk of collective failure provides an escape from the tragedy of the commons

Francisco C. Santos; Jorge M. Pacheco

From group hunting to global warming, how to deal with collective action may be formulated in terms of a public goods game of cooperation. In most cases, contributions depend on the risk of future losses. Here, we introduce an evolutionary dynamics approach to a broad class of cooperation problems in which attempting to minimize future losses turns the risk of failure into a central issue in individual decisions. We find that decisions within small groups under high risk and stringent requirements to success significantly raise the chances of coordinating actions and escaping the tragedy of the commons. We also offer insights on the scale at which public goods problems of cooperation are best solved. Instead of large-scale endeavors involving most of the population, which as we argue, may be counterproductive to achieve cooperation, the joint combination of local agreements within groups that are small compared with the population at risk is prone to significantly raise the probability of success. In addition, our model predicts that, if one takes into consideration that groups of different sizes are interwoven in complex networks of contacts, the chances for global coordination in an overall cooperating state are further enhanced.


Journal of Theoretical Biology | 2009

Evolution of cooperation under N-person snowdrift games

Max O. Souza; Jorge M. Pacheco; Francisco C. Santos

In the animal world, performing a given task which is beneficial to an entire group requires the cooperation of several individuals of that group who often share the workload required to perform the task. The mathematical framework to study the dynamics of collective action is game theory. Here we study the evolutionary dynamics of cooperators and defectors in a population in which groups of individuals engage in N-person, non-excludable public goods games. We explore an N-person generalization of the well-known two-person snowdrift game. We discuss both the case of infinite and finite populations, taking explicitly into consideration the possible existence of a threshold above which collective action is materialized. Whereas in infinite populations, an N-person snowdrift game (NSG) leads to a stable coexistence between cooperators and defectors, the introduction of a threshold leads to the appearance of a new interior fixed point associated with a coordination threshold. The fingerprints of the stable and unstable interior fixed points still affect the evolutionary dynamics in finite populations, despite evolution leading the population inexorably to a monomorphic end-state. However, when the group size and population size become comparable, we find that spite sets in, rendering cooperation unfeasible.


PLOS Computational Biology | 2006

Stern-Judging: A Simple, Successful Norm Which Promotes Cooperation under Indirect Reciprocity

Jorge M. Pacheco; Francisco C. Santos; Fabio A. C. C. Chalub

We study the evolution of cooperation under indirect reciprocity, believed to constitute the biological basis of morality. We employ an evolutionary game theoretical model of multilevel selection, and show that natural selection and mutation lead to the emergence of a robust and simple social norm, which we call stern-judging. Under stern-judging, helping a good individual or refusing help to a bad individual leads to a good reputation, whereas refusing help to a good individual or helping a bad one leads to a bad reputation. Similarly for tit-for-tat and win-stay-lose-shift, the simplest ubiquitous strategies in direct reciprocity, the lack of ambiguity of stern-judging, where implacable punishment is compensated by prompt forgiving, supports the idea that simplicity is often associated with evolutionary success.


Journal of Theoretical Biology | 2012

The role of diversity in the evolution of cooperation

Francisco C. Santos; Flávio L. Pinheiro; Tom Lenaerts; Jorge M. Pacheco

Understanding the evolutionary mechanisms that promote and maintain cooperative behavior is recognized as a major theoretical problem where the intricacy increases with the complexity of the participating individuals. This is epitomized by the diverse nature of Human interactions, contexts, preferences and social structures. Here we discuss how social diversity, in several of its flavors, catalyzes cooperative behavior. From the diversity in the number of interactions an individual is involved to differences in the choice of role models and contributions, diversity is shown to significantly increase the chances of cooperation. Individual diversity leads to an overall population dynamics in which the underlying dilemma of cooperation is changed, benefiting the society as whole. In addition, we show how diversity in social contexts can arise from the individual capacity for organizing their social ties. As such, Human diversity, on a grand scale, may be instrumental in shaping us as the most sophisticated cooperative entities on this planet.


British Journal of Cancer | 2009

Cancer phenotype as the outcome of an evolutionary game between normal and malignant cells

David Dingli; Fabio A. C. C. Chalub; Francisco C. Santos; S. Van Segbroeck; Jorge M. Pacheco

Background:There is variability in the cancer phenotype across individuals: two patients with the same tumour may experience different disease life histories, resulting from genetic variation within the tumour and from the interaction between tumour and host. Until now, phenotypic variability has precluded a clear-cut identification of the fundamental characteristics of a given tumour type.Methods:Using multiple myeloma as an example, we apply the principles of evolutionary game theory to determine the fundamental characteristics that define the phenotypic variability of a tumour.Results:Tumour dynamics is determined by the frequency-dependent fitness of different cell populations, resulting from the benefits and costs accrued by each cell type in the presence of others. Our study shows how the phenotypic variability in multiple myeloma bone disease can be understood through the theoretical approach of a game that allows the identification of key genotypic features in a tumour and provides a natural explanation for phenotypic variability. This analysis also illustrates how complex biochemical signals can be translated into cell fitness that determines disease dynamics.Conclusion:The present paradigm is general and extends well beyond multiple myeloma, and even to non-neoplastic disorders. Furthermore, it provides a new perspective in dealing with cancer eradication. Instead of trying to kill all cancer cells, therapies should aim at reducing the fitness of malignant cells compared with normal cells, allowing natural selection to eradicate the tumour.

Collaboration


Dive into the Francisco C. Santos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Lenaerts

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sven Van Segbroeck

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando P. Santos

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Hugues Bersini

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Paiva

Instituto Superior Técnico

View shared research outputs
Researchain Logo
Decentralizing Knowledge