Francisco Gámez
Pablo de Olavide University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francisco Gámez.
Journal of Physical Chemistry A | 2011
Paola Hurtado; Francisco Gámez; Said Hamad; Bruno Martínez-Haya; Jeffrey D. Steill; Jos Oomens
The complexes formed by crown ethers with hydronium and ammonium cations are of key relevance for the understanding of their supramolecular behavior in protic solvents. In this work, the complexes of the 15-crown-5 (15c5) and 18-crown-6 (18c6) ethers with H₃O⁺ and NH₄⁺ and their deuterated variants are investigated under isolated conditions. The study employs infrared multiple photon dissociation (IRMPD) vibrational spectroscopy and DFT B3LYP/6-31++G(d,p) calculations for conformational assignment. The 18c6 ether provides two energetically nearby C(3v) conformations with commensurate linear O-H···O and N-H···O bonds. The 15c5 ether ring adopts partially folded asymmetric pyramidal geometries, yielding one shorter linear H bond and two longer non-linear H bonds. Remarkably, an appreciable broadening of the IRMPD vibrational bands is observed for the 15c5-H₃O⁺/D₃O⁺ complexes. This can be interpreted as a signature for partial sharing of the proton (or deuteron) between the water and the crown ether along the linear O-H···O intermolecular H bond, which is indeed particularly short for this complex.
Molecular Physics | 2008
Francisco Gámez; Santiago Lago; B. Garzón; Patrick J. Merkling; Carlos Vega
Gibbs ensemble Monte Carlo simulations are performed to obtain the vapour–liquid equilibrium of oblate-like fluids interacting through the Kihara intermolecular potential. Results confirm the validity of a perturbation theory for Kihara fluids, whose accuracy for prolate fluids was tested some years ago. As in the case of hard ellipsoids, the symmetry of the phase diagram of oblate and prolate models is analysed. An interesting relation of Boyle temperature and critical parameters with molecular volume is found for the considered models. As a particular application, this relation allows the prediction of some thermodynamic properties of a new promising biofuel 2,5dimethylfuran.
Journal of Colloid and Interface Science | 2011
Tânia Lopes-Costa; Francisco Gámez; Santiago Lago; José M. Pedrosa
In this work, surface properties of octadecylamine (ODA) monolayers in the presence of different concentrations of calf thymus DNA in the aqueous subphase covering a range of 2-8μM have been investigated. The increase of DNA concentration is accompanied by a marked increment in the expansion of the corresponding isotherms. In addition, there is a change in the profile of the isotherms ranging from an abrupt liquid-solid transition for the lipid monolayer on pure water to a slow condensation of the monolayer in a liquid state when DNA is added to the subphase, demonstrating the effective adsorption of the polynucleotide to the long chain amine monolayer. Additional phase transitions appear in the isotherms upon addition of sufficient amount of DNA, revealing the existence of specific processes such as folding or squeezing out of the DNA. This system is, however, highly reversible during compression-expansion cycles due to the strong interaction between the two components. These results are also supported by Brewster Angle Microscopy (BAM) images showing significant changes in the morphology of the film. Integral reflectivity of the BAM microscope has been used to study both isotherms themselves and the kinetic process of DNA inclusion into the lipid-like ODA monolayer. This parameter has been proven to be very effective for quantification of the monolayer processes showing high consistency with the compressibility and kinetics results.
ChemPhysChem | 2013
Francisco Gámez; Paola Hurtado; Ana R. Hortal; Bruno Martínez-Haya; Giel Berden; Jos Oomens
The benchmark inclusion complexes formed by α-cyclodextrin (αCD) with alkali-metal cations are investigated under isolated conditions in the gas phase. The relative αCD-M(+) (M=Li(+), Na(+), K(+), Cs(+)) binding affinities and the structure of the complexes are determined from a combination of mass spectrometry, infrared action spectroscopy and quantum chemical computations. Solvent-free laser desorption measurements reveal a trend of decreasing stability of the isolated complexes with increasing size of the cation guest. The experimental infrared spectra are qualitatively similar for the complexes with the four cations investigated, and are consistent with the binding of the cation within the primary face of the cyclodextrin, as predicted by the quantum computations (B3LYP/6-31+G*). The inclusion of the quantum-chemical cation disrupts the C(6) symmetry of the free cyclodextrin to provide the optimum coordination of the cations with the -CH(2)OH groups in C(1), C(2) or C(3) symmetry arrangements that are determined by the size of the cation.
Journal of Chemical Physics | 2011
Ana Laura Benavides; Francisco Gámez
An analytical expression for the Helmholtz free energy of discrete multipolar potentials as a function of density, temperature, and intermolecular parameters is obtained as an extension of the multipolar square-well perturbation theory [A. L. Benavides, Y. Guevara, and F. del Río, Physica A 202, 420 (1994)]. The presented procedure is suitable for the description of a more general intermolecular potential model taking into account the overlap and dispersion forces through a discrete potential represented by a sequence of square-shoulders and wells, as well as electrostatic interactions. The main advantage of this approach is that since the Helmholtz free energy is given as an explicit expression in terms of the intermolecular parameters characterizing the interaction, the properties of interest can be easily obtained through usual thermodynamic relations. Besides, since a great variety of discretized potentials can be used with this equation of state, its applicability is very vast. By varying the intermolecular parameters, some illustrative cases are considered, and their phase diagrams are tested against available simulation data. It is found that this theoretical approach is able to reproduce qualitatively and quantitatively well the vapor-liquid equilibrium of the chosen potentials with different multipole moment of varied strengths, except in the critical region.
Journal of Chemical Physics | 2015
Gianmarco Munaò; Francisco Gámez; Dino Costa; C. Caccamo; Francesco Sciortino; Achille Giacometti
We investigate thermodynamic properties of anisotropic colloidal dumbbells in the frameworks provided by the Reference Interaction Site Model (RISM) theory and an Optimized Perturbation Theory (OPT), this latter based on a fourth-order high-temperature perturbative expansion of the free energy, recently generalized to molecular fluids. Our model is constituted by two identical tangent hard spheres surrounded by square-well attractions with same widths and progressively different depths. Gas-liquid coexistence curves are obtained by predicting pressures, free energies, and chemical potentials. In comparison with previous simulation results, RISM and OPT agree in reproducing the progressive reduction of the gas-liquid phase separation as the anisotropy of the interaction potential becomes more pronounced; in particular, the RISM theory provides reasonable predictions for all coexistence curves, bar the strong anisotropy regime, whereas OPT performs generally less well. Both theories predict a linear dependence of the critical temperature on the interaction strength, reproducing in this way the mean-field behavior observed in simulations; the critical density—that drastically drops as the anisotropy increases—turns to be less accurate. Our results appear as a robust benchmark for further theoretical studies, in support to the simulation approach, of self-assembly in model colloidal systems.
Journal of Chemical Physics | 2012
Paola Hurtado; Francisco Gámez; Said Hamad; Bruno Martínez-Haya; Jeffrey D. Steill; Jos Oomens
The elucidation of the structural requirements for molecular recognition by the crown ether (18-crown-6)-2,3,11,12-tetracarboxylic acid (18c6H(4)) and its cationic complexes constitutes a topic of current fundamental and practical interest in catalysis and analytical sciences. The flexibility of the central ether ring and its four carboxyl side arms poses important challenges to experimental and theoretical approaches. In this study, infrared action vibrational spectroscopy and quantum mechanical computations are employed to characterize the conformational structure of the isolated gas phase complex formed by the 18c6H(4) host with NH(4)(+) as guest. The results show that the most stable gas-phase structure is a barrel-like conformation sustained by tetrapodal H-bonding of the ammonia cation with two C=O side groups and with four oxygen atoms of the ether ring in a bifurcated arrangement. Interestingly, a similar structure had been proposed in previous crystallographic studies. The experiment also provides evidence for a significant contribution of a higher energy bowl-like conformer with features resembling those adopted by 18c6H(4) in the analogous complexes with secondary amines. Such a conformation displays H-bonding between confronted side carboxyl groups and tetrapodal binding of the NH(4)(+) with the ether ring and with one C=O group. Structures involving even more extensive intramolecular H-bonding in the 18c6H(4) substrate are found to lie higher in energy and are ruled out by the experiment.
Materials | 2017
Javier Roales; Francisco G. Moscoso; Francisco Gámez; Tânia Lopes-Costa; Ahmad Sousaraei; Santiago Casado; Jose Castro-Smirnov; Juan Cabanillas-Gonzalez; José Manuel Marques Martins de Almeida; Carla Queirós; Luís Cunha-Silva; Ana M. G. Silva; José M. Pedrosa
A novel technique for the creation of metal-organic framework (MOF) films based on soft-imprinting and their use as gas sensors was developed. The microporous MOF material [Zn2(bpdc)2(bpee)] (bpdc = 4,4′-biphenyldicarboxylate; bpee = 1,2-bipyridylethene) was synthesized solvothermally and activated by removing the occluded solvent molecules from its inner channels. MOF particles were characterized by powder X-ray diffraction and fluorescence spectroscopy, showing high crystallinity and intense photoluminescence. Scanning electron microscope images revealed that MOF crystals were mainly in the form of microneedles with a high surface-to-volume ratio, which together with the high porosity of the material enhances its interaction with gas molecules. MOF crystals were soft-imprinted into cellulose acetate (CA) films on quartz at different pressures. Atomic force microscope images of soft-imprinted films showed that MOF crystals were partially embedded into the CA. With this procedure, mechanically stable films were created, with crystals protruding from the CA surface and therefore available for incoming gas molecules. The sensing properties of the films were assessed by exposing them to saturated atmospheres of 2,4-dinitrotoluene, which resulted in a substantial quenching of the fluorescence after few seconds. The soft-imprinted MOF films on CA/quartz exhibit good sensing capabilities for the detection of nitroaromatics, which was attributed to the MOF sensitivity and to the novel and more efficient film processing method based on soft-imprinting.
Molecular Physics | 2013
Francisco Gámez; Rafael D. Acemel; Alejandro Cuetos
Parsons–Lee approach is formulated for the isotropic–nematic transition in a binary mixture of oblate hard spherocylinders and hard spheres. Results for the phase coexistence and for the equation of state in both phases for fluids with different relative size and composition ranges are presented. The predicted behaviour is in agreement with Monte Carlo simulations in a qualitative fashion. The study serves to provide a rational view of how to control key aspects of the behaviour of these binary nematogenic colloidal systems. This behaviour can be tuned with an appropriate choice of the relative size and molar fractions of the depleting particles. In general, the mixture of discotic and spherical particles is stable against demixing up to very high packing fractions. We explore in detail the narrow geometrical range where demixing is predicted to be possible in the isotropic phase. The influence of molecular crowding effects on the stability of the mixture when spherical molecules are added to a system of discotic colloids is also studied.
Materials | 2017
María G. Guillén; Francisco Gámez; Belén Suárez; Carla Queirós; Ana M. G. Silva; Angel Barranco; Juan R. Sanchez-Valencia; José M. Pedrosa; Tânia Lopes-Costa
The incorporation of a prototypical rosamine fluorescent dye from organic solutions into transparent and microstructured columnar TiO2 and SiO2 (MO2) thin films, prepared by evaporation at glancing angles (GAPVD), was evaluated. The aggregation of the adsorbed molecules, the infiltration efficiency and the adsorption kinetics were studied by means of UV-Vis absorption and fluorescence spectroscopies. Specifically, the infiltration equilibrium as well as the kinetic of adsorption of the emitting dye has been described by a Langmuir type adsorption isotherm and a pseudosecond order kinetic model, respectively. The anchoring mechanism of the rosamine to the MO2 matrix has been revealed by specular reflectance Fourier transform infrared spectroscopy and infiltration from aqueous solutions at different pH values. Finally, the sensing performance towards NO2 gas of optimized films has been assessed by following the changes of its fluorescence intensity revealing that the so-selected device exhibited improved sensing response compared to similar hybrid films reported in the literature.