Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco J. A. Nascimento is active.

Publication


Featured researches published by Francisco J. A. Nascimento.


Nature Communications | 2014

Meiofauna increases bacterial denitrification in marine sediments

Stefano Bonaglia; Francisco J. A. Nascimento; Marco Bartoli; Isabell Klawonn; Volker Brüchert

Denitrification is a critical process that can alleviate the effects of excessive nitrogen availability in aquatic ecosystems subject to eutrophication. An important part of denitrification occurs in benthic systems where bioturbation by meiofauna (invertebrates <1 mm) and its effect on element cycling are still not well understood. Here we study the quantitative impact of meiofauna populations of different abundance and diversity, in the presence and absence of macrofauna, on nitrate reduction, carbon mineralization and methane fluxes. In sediments with abundant and diverse meiofauna, denitrification is double that in sediments with low meiofauna, suggesting that meiofauna bioturbation has a stimulating effect on nitrifying and denitrifying bacteria. However, high meiofauna densities in the presence of bivalves do not stimulate denitrification, while dissimilatory nitrate reduction to ammonium rate and methane efflux are significantly enhanced. We demonstrate that the ecological interactions between meio-, macrofauna and bacteria are important in regulating nitrogen cycling in soft-sediment ecosystems.


Ecology | 2010

Higher diversity of deposit‐feeding macrofauna enhances phytodetritus processing

Agnes M. L. Karlson; Francisco J. A. Nascimento; Johan Näslund; Ragnar Elmgren

The link between biodiversity and ecosystem functioning is an important question that remains unresolved, particularly in marine systems, in which cycling of organic matter by benthic organisms is of global significance. Direct observations of specific resource use by each species in single- and multispecies communities, as quantified by stable isotopes, facilitates a mechanistic understanding of the importance of each species for ecosystem functioning. We tested the effects of altered biodiversity (species richness) of deposit-feeding macrofauna on incorporation and burial of phytodetritus in combinations of three species representing natural communities found in the sediments of the species-poor Baltic Sea. The three species, two amphipods and a bivalve, had different rates of incorporation and burial and different needs for carbon (C) and nitrogen (N). The amphipods exhibited clear resource partitioning in sympatry, as a result of vertical separation in the sediment and consequent differential use of food. Communities of several species incorporated more C and N than expected from the respective single-species treatments, due to higher incorporation by surface feeders in multispecies treatments. Community incorporation of N in the most diverse treatment even exceeded N incorporation by a single-species treatment of the best-performing species, showing transgressive over-yielding. This over-yielding was primarily due to positive complementarity in all treatments. Diverse soft bottoms are also likely to be more productive in the long run, as species-specific traits (subsurface feeding) preserve fresh phytodetritus by burying it to depths in the sediment at which the mineralization rate is low. The more diverse sediment communities showed more efficient trophic transfer of phytodetritus, a finding of general significance for understanding biological processes driving the transformation of nutrients and energy in benthic ecosystems.


Global Change Biology | 2017

The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world

Jennifer R. Griffiths; Martina Kadin; Francisco J. A. Nascimento; Tobias Tamelander; Anna Törnroos; Stefano Bonaglia; Erik Bonsdorff; Volker Brüchert; Anna Gårdmark; Marie Järnström; Jonne Kotta; Martin Lindegren; Marie C. Nordström; Alf Norkko; Jens Olsson; Benjamin Weigel; Ramunas Žydelis; Thorsten Blenckner; Susa Niiranen; Monika Winder

Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems, and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure and function are strongly affected by anthropogenic pressures; however, there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic-pelagic coupling processes (e.g., nutrient exchange and sedimentation of organic material) are to some extent quantifiable, but the magnitude and variability of biological processes are rarely assessed, preventing quantitative comparisons. Changing oxygen conditions will continue to have widespread effects on the processes that govern inorganic and organic matter exchange among habitats while climate change and nutrient load reductions may have large effects on organic matter sedimentation. Many biological processes (predation, bioturbation) are expected to be sensitive to anthropogenic drivers, but the outcomes for ecosystem function are largely unknown. We emphasize how improved empirical and experimental understanding of benthic-pelagic coupling processes and their variability are necessary to inform models that can quantify the feedbacks among processes and ecosystem responses to a changing world.


Oecologia | 2011

Diversity of larger consumers enhances interference competition effects on smaller competitors.

Francisco J. A. Nascimento; Agnes M. L. Karlson; Johan Näslund; Ragnar Elmgren

Competition between large and small species for the same food is common in a number of ecosystems including aquatic ones. How diversity of larger consumers affects the access of smaller competitors to a limiting resource is not well understood. We tested experimentally how species richness (0–3 spp.) of benthic deposit-feeding macrofauna changes meiofaunal ostracods’ incorporation of fresh organic matter from a stable-isotope-labeled cyanobacterial bloom, using fauna from the species-poor Baltic Sea. Presence of macrofauna mostly decreased meiofaunal incorporation of bloom material, depending on the macrofauna species present. As expected, the species identity of macrofauna influenced the incorporation of organic matter by meiofauna. Interestingly, our results show that, in addition, species richness of the macrofauna significantly reduced meiofauna incorporation of freshly settled nitrogen and carbon. With more than one macrofauna species, the reduction was always greater than expected from the single-species treatments. Field data from the Baltic Sea showed a negative correlation between macrofauna diversity and meiofaunal ostracod abundance, as expected from the experimental results. We argue that this is caused by interference competition, due to spatial niche differentiation between macrofauna species reducing the sediment volume in which ostracods can feed undisturbed by larger competitors. Interference from macrofauna significantly reduces organic matter incorporation by meiofauna, indicating that diversity of larger consumers is an important factor controlling the access of smaller competitors to a limiting food resource.


The ISME Journal | 2010

Meiofauna reduces bacterial mineralization of naphthalene in marine sediment

Johan Näslund; Francisco J. A. Nascimento; Jonas S. Gunnarsson

The role of sediment-living meiofauna, benthic invertebrates smaller than 1000 μm such as nematodes and ostracods, on the mineralization of naphthalene, a common polycyclic aromatic hydrocarbon (PAH) in marine sediments, was studied in microcosms using radiorespirometry. A method to extract live meiofauna was developed and used in order to experimentally manipulate meiofauna abundance and group diversity. Higher abundances of meiofauna were found to significantly decrease naphthalene mineralization. Furthermore, a change in the bacterial community composition (studied using terminal restriction fragment length polymorphism) was also observed in presence of higher meiofauna abundance, as well as a lower number of cultivable naphthalene-degrading bacteria. The reduced mineralization of naphthalene and the altered bacterial community composition in the presence of increased meiofauna abundance is likely the result of top-down control by meiofauna. This study shows that higher abundances of meiofauna can significantly decrease the microbial mineralization of PAHs such as naphthalene and also significantly modify the bacterial community composition in natural marine sediments.


Environmental Science & Technology | 2016

Joint Toxicity of Cadmium and Ionizing Radiation on Zooplankton Carbon Incorporation, Growth and Mobility

Francisco J. A. Nascimento; Claus Svendsen; Clare Bradshaw

The risk of exposure to radioactive elements is seldom assessed considering mixture toxicity, potentially over- or underestimating biological and ecological effects on ecosystems. This study investigated how three end points, carbon transfer between phytoplankton and Daphnia magna, D. magna mobility and growth, responded to exposure to γ-radiation in combination with the heavy metal cadmium (Cd), using the MIXTOX approach. Observed effects were compared with mixture effects predicted by concentration addition (CA) and independent action (IA) models and with deviations for synergistic/antagonistic (S/A), dose-level (DL), and dose-ratio (DR) dependency interactions. Several patterns of response were observed depending on the end point tested. DL-dependent deviation from the IA model was observed for carbon incorporation with antagonism switching to synergism at higher doses, while the CA model indicated synergism, mainly driven by effects at high doses of γ-radiation. CA detected antagonism regarding acute immobilization, while IA predicted DR-dependency. Both CA and IA also identified antagonism for daphnid growth. In general, effects of combinations of γ-radiation and Cd seem to be antagonistic at lower doses, but synergistic at the higher range of the doses tested. Our results highlight the importance of investigating the effects of exposure to γ-radiation in a multistressor context.


Environmental Science & Technology | 2015

Combined effects from γ radiation and fluoranthene exposure on carbon transfer from phytoplankton to zooplankton

Francisco J. A. Nascimento; Claus Svendsen; Clare Bradshaw

Risk assessment does not usually take into account mixtures of contaminants, thus potentially under- or overestimating environmental effects. We investigated how the transfer of carbon between a primary producer, Pseudokirchneriella subcapitata, and a consumer, Daphnia magna, is affected by acute exposure of γ radiation (GR) in combination with the polycyclic aromatic hydrocarbon fluoranthene (FA). We exposed D. magna to five concentrations of FA and five acute doses of GR as single contaminants and in nine binary combinations. We compared the observed data for three end points (incorporation of carbon by D. magna, D. magna ingestion rates, and growth) to the predicted joint effects of the mixed stressors based on the independent action (IA) concept. There were deviations from the IA predictions, especially for ingestion rates and carbon incorporation by D. magna, where antagonistic effects were observed at the lower doses, while synergism was seen at the highest doses. Our results highlight the importance of investigating the effects of exposure to GR in a multistressor context. In mixtures of GR and FA, the IA-predicted effects seem to be conservative as antagonism between the two stressors was the dominant pattern, possibly due to stimulation of cellular antioxidative stress mechanisms.


Scientific Reports | 2017

Methane fluxes from coastal sediments are enhanced by macrofauna

Stefano Bonaglia; Volker Brüchert; Nolwenn Callac; Alessandra Vicenzi; Ernest Chi Fru; Francisco J. A. Nascimento

Methane and nitrous oxide are potent greenhouse gases (GHGs) that contribute to climate change. Coastal sediments are important GHG producers, but the contribution of macrofauna (benthic invertebrates larger than 1 mm) inhabiting them is currently unknown. Through a combination of trace gas, isotope, and molecular analyses, we studied the direct and indirect contribution of two macrofaunal groups, polychaetes and bivalves, to methane and nitrous oxide fluxes from coastal sediments. Our results indicate that macrofauna increases benthic methane efflux by a factor of up to eight, potentially accounting for an estimated 9.5% of total emissions from the Baltic Sea. Polychaetes indirectly enhance methane efflux through bioturbation, while bivalves have a direct effect on methane release. Bivalves host archaeal methanogenic symbionts carrying out preferentially hydrogenotrophic methanogenesis, as suggested by analysis of methane isotopes. Low temperatures (8 °C) also stimulate production of nitrous oxide, which is consumed by benthic denitrifying bacteria before it reaches the water column. We show that macrofauna contributes to GHG production and that the extent is dependent on lineage. Thus, macrofauna may play an important, but overlooked role in regulating GHG production and exchange in coastal sediment ecosystems.


Limnology and Oceanography | 2012

Meiofauna enhances organic matter mineralization in soft sediment ecosystems

Francisco J. A. Nascimento; Johan Näslund; Ragnar Elmgren


Limnology and Oceanography | 2008

Settling blooms of filamentous cyanobacteria as food for meiofauna assemblages.

Francisco J. A. Nascimento; Agnes M. L. Karlson; Ragnar Elmgren

Collaboration


Dive into the Francisco J. A. Nascimento's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claus Svendsen

Natural Environment Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge