Francisco J. García-De-León
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francisco J. García-De-León.
Molecular Phylogenetics and Evolution | 2010
P. Diaz-Jaimes; M. Uribe-Alcocer; Axayácatl Rocha-Olivares; Francisco J. García-De-León; P. Nortmoon; Jean-Dominique Durand
Pelagic fish that are distributed circumtropically are characterised by a low population structure level as a result of a high capacity for dispersion and large population sizes. Nevertheless, historical and contemporary processes, including past demographic and/or range expansions, secondary contact, dispersal, gene flow, and the achievement of large effective population sizes, may play a part in the detection of divergence signals, especially in the case of tropical pelagic species, whose distribution range depends strongly on the sea surface temperature. The connectivity and historical demography of Atlantic, Indian, Pacific and Mediterranean populations of dolphinfish (Coryphaena hippurus) was studied using partial sequences of the mitochondrial DNA NADH dehydrogenase subunit 1 (ND1). AMOVA analyses revealed significant inter-oceanic divergence with three phylogroups located in the Indo-Pacific, Eastern Atlantic, and Mediterranean Sea, the last one being the most divergent. However, it was not possible to clearly observe any genetic differentiation between the Indo-Pacific and Atlantic populations, as has been reported for most tropical pelagic species of tuna and billfishes. This supports the assumption of recent dispersal among basins facilitated by the actual continuous distribution of dolphinfish populations. Moreover, the lack of a divergence signal for populations separated by the Panamanian Isthmus reveals that genetic drift does not exert a strong influence on tropical pelagic species with large effective population sizes.
bioRxiv | 2016
Travis C. Glenn; Roger Nilsen; Troy J. Kieran; John W. Finger; Todd W. Pierson; Kerin E. Bentley; Sandra L. Hoffberg; Swarnali Louha; Francisco J. García-De-León; Miguel Angel del Rio Portilla; Kurt D. Reed; Jennifer L. Anderson; Jennifer K. Meece; Sammy Aggery; R. Rekaya; Magdy S. Alabady; Myriam Belanger; Kevin Winker; Brant C. Faircloth
Next-generation DNA sequencing (NGS) offers many benefits, but major factors limiting NGS include reducing the time and costs associated with: 1) start-up (i.e., doing NGS for the first time), 2) buy-in (i.e., getting any data from a run), and 3) sample preparation. Although many researchers have focused on reducing sample preparation costs, few have addressed the first two problems. Here, we present iTru and iNext, dual-indexing systems for Illumina libraries that help address all three of these issues. By breaking the library construction process into re-usable, combinatorial components, we achieve low start-up, buy-in, and per-sample costs, while simultaneously increasing the number of samples that can be combined within a single run. We accomplish this by extending the Illumina TruSeq dual-indexing approach from 20 (8+12) indexed adapters that produce 96 (8x12) unique combinations to 579 (192+387) indexed primers that produce 74,304 (192x387) unique combinations. We synthesized 208 of these indexed primers for validation, and 206 of them passed our validation criteria (99% success). We also used the indexed primers to create hundreds of libraries in a variety of scenarios. Our approach reduces start-up and per-sample costs by requiring only one universal adapter which works with indexed PCR primers to uniquely identify samples. Our approach reduces buy-in costs because: 1) relatively few oligonucleotides are needed to produce a large number of indexed libraries; and 2) the large number of possible primers allows researchers to use unique primer sets for different projects, which facilitates pooling of samples during sequencing. Although the methods we present are highly customizable, resulting libraries can be used with the standard Illumina sequencing primers and demultiplexed with the standard Illumina software packages, thereby minimizing instrument and software customization headaches. In subsequent Adapterama papers, we use these same iTru primers with different adapter stubs to construct double- to quadruple-indexed amplicon libraries and double-digest restriction-site associated DNA (RAD) libraries. For additional details and updates, please see http://baddna.org.Next-generation DNA sequencing (NGS) offers many benefits, but major factors limiting NGS include reducing costs of: 1) start-up (i.e., doing NGS for the first time); 2) buy-in (i.e., getting the smallest possible amount of data from a run); and 3) sample preparation. Reducing sample preparation costs is commonly addressed, but start-up and buy-in costs are rarely addressed. We present dual-indexing systems to address all three of these issues. By breaking the library construction process into universal, re-usable, combinatorial components, we reduce all costs, while increasing the number of samples and the variety of library types that can be combined within runs. We accomplish this by extending the Illumina TruSeq dual-indexing approach to 768 (384 + 384) indexed primers that produce 384 unique dual-indexes or 147,456 (384 × 384) unique combinations. We maintain eight nucleotide indexes, with many that are compatible with Illumina index sequences. We synthesized these indexing primers, purifying them with only standard desalting and placing small aliquots in replicate plates. In qPCR validation tests, 206 of 208 primers tested passed (99% success). We then created hundreds of libraries in various scenarios. Our approach reduces start-up and per-sample costs by requiring only one universal adapter that works with indexed PCR primers to uniquely identify samples. Our approach reduces buy-in costs because: 1) relatively few oligonucleotides are needed to produce a large number of indexed libraries; and 2) the large number of possible primers allows researchers to use unique primer sets for different projects, which facilitates pooling of samples during sequencing. Our libraries make use of standard Illumina sequencing primers and index sequence length and are demultiplexed with standard Illumina software, thereby minimizing customization headaches. In subsequent Adapterama papers, we use these same primers with different adapter stubs to construct amplicon and restriction-site associated DNA libraries, but their use can be expanded to any type of library sequenced on Illumina platforms.
The American Naturalist | 2015
David A. Paz-García; Michael E. Hellberg; Francisco J. García-De-León; Eduardo F. Balart
Pocillopora corals are the main reef builders in the eastern tropical Pacific. The validity of Pocillopora morphospecies remains under debate because of disagreements between morphological and genetic data. To evaluate the temporal stability of morphospecies in situ, we monitored the shapes of individual colonies in three communities in the southern Gulf of California for 44 months. Twenty-three percent of tagged colonies of Pocillopora damicornis changed to Pocillopora inflata morphology during this time. This switch in identity coincided with a shift to a higher frequency of storms and lower water turbidity (i.e., lower chlorophyll a levels). Seven months after the switch, P. inflata colonies were recovering their original P. damicornis morphology. All colonies of both morphospecies shared a common mitochondrial identity, but most P. damicornis colonies undergoing change were at a site with low-flow conditions. This is the first in situ study to document switching between described morphospecies, and it elucidates the influence of temporal shifts in environmental conditions on morphologically plastic responses.
Oecologia | 2015
David A. Paz-García; Alejandro Aldana-Moreno; Rafael A. Cabral-Tena; Francisco J. García-De-León; Michael E. Hellberg; Eduardo F. Balart
Pocillopora corals, the dominant reef-builders in the Eastern Tropical Pacific, exhibit a high level of phenotypic plasticity, making the interpretation of morphological variation and the identification of species challenging. To test the hypothesis that different coral morphospecies represent phenotypes that develop in different flow conditions, we compared branch characters in three Pocillopora morphospecies (P.damicornis, P. verrucosa, and P. meandrina) from two communities in the Gulf of California exposed to contrasting flow conditions. Morphological variation and branch modularity (i.e., the tendency of different sets of branch traits to vary in a coordinated way) were assessed in colonies classified as Pocillopora type 1 according to two mitochondrial regions. Our results can be summarized as follows. (1) Pocillopora type 1 morphospecies corresponded to a pattern of morphological variation in the Gulf of California. Overall, P.damicornis had the thinnest branches and its colonies the highest branch density, followed by P.verrucosa, and then by P.meandrina, which had the thickest branches and its colonies the lowest branch density. (2) The differentiation among morphospecies was promoted by different levels of modularity of traits. P.verrucosa had the highest coordination of traits, followed by P.damicornis, and P.meandrina. (3) The variation and modularity of branch traits were related to water flow condition. Morphology under the high-flow condition was more similar among morphospecies than under the low-flow condition and seemed to be related to mechanisms for coping with these conditions. Our results provide the first evidence that in scleractinian corals different levels of modularity can be promoted by different environmental conditions.
Ecology and Evolution | 2013
C. Darrin Hulsey; Francisco J. García-De-León
Trophically polymorphic species could represent lineages that are rapidly diverging along an ecological axis or could phenotypically mark the collapse of species through introgressive hybridization. We investigated patterns of introgression between the trophically polymorphic cichlid fish Herichthys minckleyi and its relative H. cyanoguttatus using a combination of population genetics and species tree analyses. We first examined the distribution of mitochondrial haplotypes within the alternative H. minckleyi pharyngeal jaw morphotypes that are endemic to the small desert valley of Cuatro Ciénegas. We recovered two clusters of mitochondrial haplotypes. The first contained a number of slightly differentiated cytochrome b (cytb) haplotypes that showed some phylogeographic signal and were present in both jaw morphotypes. The other haplotype was monomorphic, highly differentiated from the other cluster, present in equal frequencies in the morphotypes, and identical to H. cyanoguttatus haplotypes found outside Cuatro Ciénegas. Then, we investigated whether H. minckleyi individuals with the H. cyanoguttatus cytb were more evolutionarily similar to H. cyanoguttatus or other H. minckleyi using a species tree analysis of 84 nuclear loci. Both H. minckleyi pharyngeal morphotypes, regardless of their cytb haplotype, were quite distinct from H. cyanoguttatus. However, hybridization could be blurring subdivision within H. minckleyi as the alternative jaw morphotypes were not genetically distinct from one another. Accounting for introgression from H. cyanoguttatus will be essential to understand the evolution of the trophically polymorphic cichlid H. minckleyi.
Molecular Phylogenetics and Evolution | 2014
Susana Schönhuth; Anabel Perdices; Lourdes Lozano-Vilano; Francisco J. García-De-León; Héctor Espinosa; Richard L. Mayden
Species of Gila comprise a heterogeneous and widespread group of freshwater fishes inhabiting drainage systems of western North America. The classification of species of Gila and relatives has been complicated and sometimes compromised by differences in body shapes, sizes, habitats, variable taxonomic placement by early taxonomists, and instances of hypothesized hybridization. While most attention on Gila has focused on hybridization in USA, little is actually know about their intra and intergeneric relationships. We present a molecular phylogeny using 173 specimens for all 19 recognized species of Gila, covering their entire distributions in 31 major drainages. Using one mitochondrial and three nuclear genes, specimens of Gila were analyzed with 10 other North American genera that comprise the Revised Western Clade. All analyses identified most species of Gila in a lineage that always included the monotypic genera Moapa and Acrocheilus, and we recommend the synonymy of both genera with Gila. The composition of this Gila lineage varied depending on the genes analyzed. Within the Gila lineage, similar morphotypes (forms adapted to fast currents vs. general forms) were not resolved as closest relatives. Analyses of mitochondrial DNA resolved all species of Gila from Mexico in reciprocally monophyletic clades except G. modesta. Most species of Gila in the USA were nested in 3 major clades, potentially indicating some level of historic or contemporary interspecific hybridization. Herein, we redefine the ranges for all species of Gila in Mexico. Relevant taxonomic and conservation implications stemming from the results are discussed.
Molecular Biology and Evolution | 2013
Samuel V. Scarpino; Patrick J. Hunt; Francisco J. García-De-León; Thomas E. Juenger; Manfred Schartl; Mark Kirkpatrick
Genetic incompatibilities are commonly observed between hybridizing species. Although this type of isolating mechanism has received considerable attention, we have few examples describing how genetic incompatibilities evolve. We investigated the evolution of two loci involved in a classic example of a Bateson-Dobzhansky-Muller (BDM) incompatibility in Xiphophorus, a genus of freshwater fishes from northern Central America. Hybrids develop a lethal melanoma due to the interaction of two loci, an oncogene and its repressor. We cloned and sequenced the putative repressor locus in 25 Xiphophorus species and an outgroup species, and determined the status of the oncogene in those species from the literature. Using phylogenetic analyses, we find evidence that a repeat region in the proximal promoter of the repressor is coevolving with the oncogene. The data support a hypothesis that departs from the standard BDM model: it appears the alleles that cause the incompatibilities have coevolved simultaneously within lineages, rather than in allopatric or temporal isolation.
Mitochondrial DNA | 2016
Miguel A. Del Río-Portilla; Carmen E. Vargas-Peralta; David A. Paz-García; Fabiola Lafarga-De la Cruz; Eduardo F. Balart; Francisco J. García-De-León
Abstract The mitogenome of the endemic coral Porites panamensis (Genbank accession number KJ546638) has a total length of 18,628 bp, and the arrangement consist of 13 protein-coding genes, 2 ribosomal RNA (rRNA) genes and 2 transfer RNA (tRNA) genes. Gene order was equal to other scleractinian coral mitogenomes.
Ecology and Evolution | 2016
Christopher Darrin Hulsey; Katherine L. Bell; Francisco J. García-De-León; Chris C. Nice; Axel Meyer
Abstract Introgression might be exceptionally common during the evolution of narrowly endemic species. For instance, in the springs of the small and isolated Cuatro Ciénegas Valley, the mitogenome of the cichlid fish Herichthys cyanoguttatus could be rapidly introgressing into populations of the trophically polymorphic H. minckleyi. We used a combination of genetic and environmental data to examine the factors associated with this mitochondrial introgression. A reduced representation library of over 6220 single nucleotide polymorphisms (SNPs) from the nuclear genome showed that mitochondrial introgression into H. minckleyi is biased relative to the amount of nuclear introgression. SNP assignment probabilities also indicated that cichlids with more hybrid ancestry are not more commonly female providing no support for asymmetric backcrossing or hybrid‐induced sex‐ratio distortion in generating the bias in mitochondrial introgression. Smaller effective population size in H. minckleyi inferred from the SNPs coupled with sequences of all 13 mitochondrial proteins suggests that relaxed selection on the mitogenome could be facilitating the introgression of “H. cyanoguttatus” haplotypes. Additionally, we showed that springs with colder temperatures had greater amounts of mitochondrial introgression from H. cyanoguttatus. Relaxed selection in H. minckleyi coupled with temperature‐related molecular adaptation could be facilitating mitogenomic introgression into H. minckleyi.
Mitochondrial DNA | 2016
Carolina Galván-Tirado; Silvia Hinojosa-Alvarez; Píndaro Díaz-Jaimes; Marina Marcet-Houben; Francisco J. García-De-León
Abstract The silky shark mitogenome (GeneBank accession number KF801102) has a total length of 17,774 bp, the base composition of the genomes was as follows: A (31.36%), T (30.18%), C (25.27%) and G (13.17%), which demonstrated an A + T-rich feature (61.64%), similar to other elasmobranch mitogenomes. The mitochondrial genome contained 13 protein-coding genes and 23 tRNA genes. The tRNA genes ranged from 70 to 72 bp. The gene order was the same as in other vertebrates and teleosts.