Francisco J. Prado-Prado
University of Santiago de Compostela
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francisco J. Prado-Prado.
Bioorganic & Medicinal Chemistry | 2008
Francisco J. Prado-Prado; Humberto González-Díaz; Octavio Martínez de la Vega; Florencio M. Ubeira; Kuo-Chen Chou
Several pathogen parasite species show different susceptibilities to different antiparasite drugs. Unfortunately, almost all structure-based methods are one-task or one-target Quantitative Structure-Activity Relationships (ot-QSAR) that predict the biological activity of drugs against only one parasite species. Consequently, multi-tasking learning to predict drugs activity against different species by a single model (mt-QSAR) is vitally important. In the two previous works of the present series we reported two single mt-QSAR models in order to predict the antimicrobial activity against different fungal (Bioorg. Med. Chem.2006, 14, 5973-5980) or bacterial species (Bioorg. Med. Chem.2007, 15, 897-902). These mt-QSARs offer a good opportunity (unpractical with ot-QSAR) to construct drug-drug similarity Complex Networks and to map the contribution of sub-structures to function for multiple species. These possibilities were unattended in our previous works. In the present work, we continue this series toward other important direction of chemotherapy (antiparasite drugs) with the development of an mt-QSAR for more than 500 drugs tested in the literature against different parasites. The data were processed by Linear Discriminant Analysis (LDA) classifying drugs as active or non-active against the different tested parasite species. The model correctly classifies 212 out of 244 (87.0%) cases in training series and 207 out of 243 compounds (85.4%) in external validation series. In order to illustrate the performance of the QSAR for the selection of active drugs we carried out an additional virtual screening of antiparasite compounds not used in training or predicting series; the model recognized 97 out of 114 (85.1%) of them. We also give the procedures to construct back-projection maps and to calculate sub-structures contribution to the biological activity. Finally, we used the outputs of the QSAR to construct, by the first time, a multi-species Complex Networks of antiparasite drugs. The network predicted has 380 nodes (compounds), 634 edges (pairs of compounds with similar activity). This network allows us to cluster different compounds and identify on average three known compounds similar to a new query compound according to their profile of biological activity. This is the first attempt to calculate probabilities of antiparasitic action of drugs against different parasites.
Current Topics in Medicinal Chemistry | 2008
Humberto González-Díaz; Francisco J. Prado-Prado; Florencio M. Ubeira
The method MARCH-INSIDE (MARkovian CHemicals IN SIlico DEsign) is a simple but efficient computational approach to the study of Quantitative Structure-Activity Relationships (QSAR) in Medicinal Chemistry. The method uses the theory of Markov Chains to generate parameters that numerically describe the chemical structure of drugs and drug targets. This approach generates two principal types of parameters Stochastic Topological Indices (sto-TIs) and stochastic 3D-Topographic Indices (sto-TPGIs). The use of these parameters allows the rapid collection, annotation, retrieval, comparison and mining of molecular and macromolecular chemical structures within large databases. In the work described here, we review and comment on the several applications of MARCH-INSIDE to the Medicinal Chemistry of Antimicrobial agents as well as their molecular targets. First we revised the use of classic sto-TIs to predict antiparasite compounds for the treatment of Fascioliasis. Next, we revised the use of chiral sto-TIs (sto-CTIs) to predict new antibacterial, antiviral and anti-coccidial compounds. After that, we review multi-target sto-TIs (mt-sto-TIs), which unifying QSAR models predicting antifungal, antibacterial, or anti-parasite drugs with multiple targets (microbial species). We also discussed the uses of mt-sto-TIs to assemble drug-drug similarity Complex Networks of antimicrobial compounds based on molecular structure. Last, we review the use of MARCH-INSIDE to generate macromolecular TIs and TPGIs for proteins or RNA targets for antimicrobial drugs.
Journal of Computational Chemistry | 2008
Humberto González-Díaz; Francisco J. Prado-Prado
There are many pathogen microbial species with very different antimicrobial drugs susceptibility. In this work, we selected pairs of antifungal drugs with similar/dissimilar species predicted‐activity profile and represented it as a large network, which may be used to identify drugs with similar mechanism of action. Computational chemistry prediction of the biological activity based on quantitative structure–activity relationships (QSAR) susbtantially increases the potentialities of this kind of networks, avoiding time and resource‐consuming experiments. Unfortunately, most QSAR models are unspecific or predict activity against only one species. To solve this problem we developed a multispecies QSAR classification model, in which the outputs were the inputs of the aforementioned network. Overall model classification accuracy was 87.0% (161/185 compounds) in training, 83.4% (50/61) in validation, and 83.7% for 288 additional antifungal compounds used to extend model validation for network construction. The network predicted has 59 nodes (compounds), 648 edges (pairs of compounds with similar activity), low coverage density d = 37.8%, and distribution more close to normal than to exponential. These results are more characteristic of a not‐overestimated random network, clustering different drug mechanisms of actions, than of a less useful power law network with few mechanisms (network hubs).
Bioorganic & Medicinal Chemistry | 2009
Francisco J. Prado-Prado; Octavio Martínez de la Vega; Eugenio Uriarte; Florencio M. Ubeira; Kuo-Chen Chou; Humberto González-Díaz
One limitation of almost all antiviral Quantitative Structure-Activity Relationships (QSAR) models is that they predict the biological activity of drugs against only one species of virus. Consequently, the development of multi-tasking QSAR models (mt-QSAR) to predict drugs activity against different species of virus is of the major vitally important. These mt-QSARs offer also a good opportunity to construct drug-drug Complex Networks (CNs) that can be used to explore large and complex drug-viral species databases. It is known that in very large CNs we can use the Giant Component (GC) as a representative sub-set of nodes (drugs) and but the drug-drug similarity function selected may strongly determines the final network obtained. In the three previous works of the present series we reported mt-QSAR models to predict the antimicrobial activity against different fungi [Gonzalez-Diaz, H.; Prado-Prado, F. J.; Santana, L.; Uriarte, E. Bioorg.Med.Chem.2006, 14, 5973], bacteria [Prado-Prado, F. J.; Gonzalez-Diaz, H.; Santana, L.; Uriarte E. Bioorg.Med.Chem.2007, 15, 897] or parasite species [Prado-Prado, F.J.; González-Díaz, H.; Martinez de la Vega, O.; Ubeira, F.M.; Chou K.C. Bioorg.Med.Chem.2008, 16, 5871]. However, including these works, we do not found any report of mt-QSAR models for antivirals drug, or a comparative study of the different GC extracted from drug-drug CNs based on different similarity functions. In this work, we used Linear Discriminant Analysis (LDA) to fit a mt-QSAR model that classify 600 drugs as active or non-active against the 41 different tested species of virus. The model correctly classifies 143 of 169 active compounds (specificity=84.62%) and 119 of 139 non-active compounds (sensitivity=85.61%) and presents overall training accuracy of 85.1% (262 of 308 cases). Validation of the model was carried out by means of external predicting series, classifying the model 466 of 514, 90.7% of compounds. In order to illustrate the performance of the model in practice, we develop a virtual screening recognizing the model as active 92.7%, 102 of 110 antivirus compounds. These compounds were never use in training or predicting series. Next, we obtained and compared the topology of the CNs and their respective GCs based on Euclidean, Manhattan, Chebychey, Pearson and other similarity measures. The GC of the Manhattan network showed the more interesting features for drug-drug similarity search. We also give the procedure for the construction of Back-Projection Maps for the contribution of each drug sub-structure to the antiviral activity against different species.
Bioorganic & Medicinal Chemistry | 2010
Francisco J. Prado-Prado; Xerardo García-Mera; Humberto González-Díaz
There are many of pathogen parasite species with different susceptibility profile to antiparasitic drugs. Unfortunately, almost QSAR models predict the biological activity of drugs against only one parasite species. Consequently, predicting the probability with which a drug is active against different species with a single unify model is a goal of the major importance. In so doing, we use Markov Chains theory to calculate new multi-target spectral moments to fit a QSAR model that predict by the first time a mt-QSAR model for 500 drugs tested in the literature against 16 parasite species and other 207 drugs no tested in the literature using spectral moments. The data was processed by linear discriminant analysis (LDA) classifying drugs as active or non-active against the different tested parasite species. The model correctly classifies 311 out of 358 active compounds (86.9%) and 2328 out of 2577 non-active compounds (90.3%) in training series. Overall training performance was 89.9%. Validation of the model was carried out by means of external predicting series. In these series the model classified correctly 157 out 190, 82.6% of antiparasitic compounds and 1151 out of 1277 non-active compounds (90.1%). Overall predictability performance was 89.2%. In addition we developed four types of non Linear Artificial neural networks (ANN) and we compared with the mt-QSAR model. The improved ANN model had an overall training performance was 87%. The present work report the first attempts to calculate within a unify framework probabilities of antiparasitic action of drugs against different parasite species based on spectral moment analysis.
Journal of Proteome Research | 2011
Humberto González-Díaz; Francisco J. Prado-Prado; Xerardo García-Mera; Nerea Alonso; Paula Abeijón; Olga Caamaño; Matilde Yáñez; Cristian R. Munteanu; Alejandro Pazos; María Auxiliadora Dea-Ayuela; María Teresa Gómez-Muñoz; M. Magdalena Garijo; José Sansano; Florencio M. Ubeira
Many drugs with very different affinity to a large number of receptors are described. Thus, in this work, we selected drug-target pairs (DTPs/nDTPs) of drugs with high affinity/nonaffinity for different targets. Quantitative structure-activity relationship (QSAR) models become a very useful tool in this context because they substantially reduce time and resource-consuming experiments. Unfortunately, most QSAR models predict activity against only one protein target and/or they have not been implemented on a public Web server yet, freely available online to the scientific community. To solve this problem, we developed a multitarget QSAR (mt-QSAR) classifier combining the MARCH-INSIDE software for the calculation of the structural parameters of drug and target with the linear discriminant analysis (LDA) method in order to seek the best model. The accuracy of the best LDA model was 94.4% (3,859/4,086 cases) for training and 94.9% (1,909/2,012 cases) for the external validation series. In addition, we implemented the model into the Web portal Bio-AIMS as an online server entitled MARCH-INSIDE Nested Drug-Bank Exploration & Screening Tool (MIND-BEST), located at http://miaja.tic.udc.es/Bio-AIMS/MIND-BEST.php . This online tool is based on PHP/HTML/Python and MARCH-INSIDE routines. Finally, we illustrated two practical uses of this server with two different experiments. In experiment 1, we report for the first time a MIND-BEST prediction, synthesis, characterization, and MAO-A and MAO-B pharmacological assay of eight rasagiline derivatives, promising for anti-Parkinson drug design. In experiment 2, we report sampling, parasite culture, sample preparation, 2-DE, MALDI-TOF and -TOF/TOF MS, MASCOT search, 3D structure modeling with LOMETS, and MIND-BEST prediction for different peptides as new protein of the found in the proteome of the bird parasite Trichomonas gallinae, which is promising for antiparasite drug targets discovery.
Journal of Proteome Research | 2009
Riccardo Concu; María Auxiliadora Dea-Ayuela; Lazaro G. Perez-Montoto; Francisco Bolás-Fernández; Francisco J. Prado-Prado; Gianni Podda; Eugenio Uriarte; Florencio M. Ubeira; Humberto González-Díaz
The number of protein and peptide structures included in Protein Data Bank (PDB) and Gen Bank without functional annotation has increased. Consequently, there is a high demand for theoretical models to predict these functions. Here, we trained and validated, with an external set, a Markov Chain Model (MCM) that classifies proteins by their possible mechanism of action according to Enzyme Classification (EC) number. The methodology proposed is essentially new, and enables prediction of all EC classes with a single equation without the need for an equation for each class or nonlinear models with multiple outputs. In addition, the model may be used to predict whether one peptide presents a positive or negative contribution of the activity of the same EC class. The model predicts the first EC number for 106 out of 151 (70.2%) oxidoreductases, 178/178 (100%) transferases, 223/223 (100%) hydrolases, 64/85 (75.3%) lyases, 74/74 (100%) isomerases, and 100/100 (100%) ligases, as well as 745/811 (91.9%) nonenzymes. It is important to underline that this method may help us predict new enzyme proteins or select peptide candidates that improve enzyme activity, which may be of interest for the prediction of new drugs or drug targets. To illustrate the models application, we report the 2D-Electrophoresis (2DE) isolation from Leishmania infantum as well as MADLI TOF Mass Spectra characterization and theoretical study of the Peptide Mass Fingerprints (PMFs) of a new protein sequence. The theoretical study focused on MASCOT, BLAST alignment, and alignment-free QSAR prediction of the contribution of 29 peptides found in the PMF of the new protein to specific enzyme action. This combined strategy may be used to identify and predict peptides of prokaryote and eukaryote parasites and their hosts as well as other superior organisms, which may be of interest in drug development or target identification.
European Journal of Medicinal Chemistry | 2009
Francisco J. Prado-Prado; Eugenio Uriarte; Fernanda Borges; Humberto González-Díaz
There are many of pathogen bacteria species which very different susceptibility profile to different antibacterial drugs. There are many drugs described with very different affinity to a large number of receptors. In this work, we selected Drug-Bacteria Pairs (DBPs) of affinity/non-affinity drugs with similar/dissimilar bacteria and represented it as a large network, which may be used to identify drugs that can act on bacteria. Computational chemistry prediction of the biological activity based on one-target Quantitative Structure-Activity Relationship (ot-QSAR) studies substantially increases the potentialities of this kind of networks avoiding time and resource consuming experiments. Unfortunately almost all ot-QSAR models predict the biological activity of drugs against only one bacterial species. Consequently, multi-tasking learning to predict drugs activity against different species with a single model (mt-QSAR) is a goal of major importance. These mt-QSARs offer a good opportunity to construct drug-drug similarity Complex Networks. Unfortunately, almost QSAR models are unspecific or predict activity against only one receptor. To solve this problem, we developed here a multi-bacteria QSAR classification model. The model correctly classifies 202 out of 241 active compounds (83.8%) and 169 out of 200 non-active cases (84.5%). Overall training predictability was 84.13% (371 out of 441 cases). The validation of the model was carried out by means of external predicting series, classifying the model 197 out of 221 (89.4%) cases. In order to show how the model functions in practice a virtual screening was carried out recognizing the model as active 86.7%, 520 out of 600 cases not used in training or predicting series. Outputs of this QSAR model were used as inputs to construct a network. The observed network has 1242 nodes (DBPs), 772,736 edges or DBPs with similar activity (sDBPs). The network predicted has 1031 nodes, 641,377 sDBPs. After edge-to-edge comparison, we have demonstrated that the predicted network is significantly similar to the observed one and both have distribution closer to exponential than to normal.
Journal of Proteome Research | 2010
Yamilet Rodriguez-Soca; Cristian R. Munteanu; Julian Dorado; Alejandro Pazos; Francisco J. Prado-Prado; Humberto González-Díaz
Trypanosoma brucei causes African trypanosomiasis in humans (HAT or African sleeping sickness) and Nagana in cattle. The disease threatens over 60 million people and uncounted numbers of cattle in 36 countries of sub-Saharan Africa and has a devastating impact on human health and the economy. On the other hand, Trypanosoma cruzi is responsible in South America for Chagas disease, which can cause acute illness and death, especially in young children. In this context, the discovery of novel drug targets in Trypanosome proteome is a major focus for the scientific community. Recently, many researchers have spent important efforts on the study of protein-protein interactions (PPIs) in pathogen Trypanosome species concluding that the low sequence identities between some parasite proteins and their human host render these PPIs as highly promising drug targets. To the best of our knowledge, there are no general models to predict Unique PPIs in Trypanosome (TPPIs). On the other hand, the 3D structure of an increasing number of Trypanosome proteins is reported in databases. In this regard, the introduction of a new model to predict TPPIs from the 3D structure of proteins involved in PPI is very important. For this purpose, we introduced new protein-protein complex invariants based on the Markov average electrostatic potential xi(k)(R(i)) for amino acids located in different regions (R(i)) of i-th protein and placed at a distance k one from each other. We calculated more than 30 different types of parameters for 7866 pairs of proteins (1023 TPPIs and 6823 non-TPPIs) from more than 20 organisms, including parasites and human or cattle hosts. We found a very simple linear model that predicts above 90% of TPPIs and non-TPPIs both in training and independent test subsets using only two parameters. The parameters were (d)xi(k)(s) = |xi(k)(s(1)) - xi(k)(s(2))|, the absolute difference between the xi(k)(s(i)) values on the surface of the two proteins of the pairs. We also tested nonlinear ANN models for comparison purposes but the linear model gives the best results. We implemented this predictor in the web server named TrypanoPPI freely available to public at http://miaja.tic.udc.es/Bio-AIMS/TrypanoPPI.php. This is the first model that predicts how unique a protein-protein complex in Trypanosome proteome is with respect to other parasites and hosts, opening new opportunities for antitrypanosome drug target discovery.
Biochimica et Biophysica Acta | 2009
R. Concu; María Auxiliadora Dea-Ayuela; Lazaro G. Perez-Montoto; Francisco J. Prado-Prado; Eugenio Uriarte; Francisco Bolás-Fernández; G. Podda; Alejandro Pazos; Cristian R. Munteanu; Florencio M. Ubeira; Humberto González-Díaz
The number of protein 3D structures without function annotation in Protein Data Bank (PDB) has been steadily increased. This fact has led in turn to an increment of demand for theoretical models to give a quick characterization of these proteins. In this work, we present a new and fast Markov chain model (MCM) to predict the enzyme classification (EC) number. We used both linear discriminant analysis (LDA) and/or artificial neural networks (ANN) in order to compare linear vs. non-linear classifiers. The LDA model found is very simple (three variables) and at the same time is able to predict the first EC number with an overall accuracy of 79% for a data set of 4755 proteins (859 enzymes and 3896 non-enzymes) divided into both training and external validation series. In addition, the best non-linear ANN model is notably more complex but has an overall accuracy of 98.85%. It is important to emphasize that this method may help us to predict not only new enzyme proteins but also to select peptide candidates found on the peptide mass fingerprints (PMFs) of new proteins that may improve enzyme activity. In order to illustrate the use of the model in this regard, we first report the 2D electrophoresis (2DE) and MADLI-TOF mass spectra characterization of the PMF of a new possible malate dehydrogenase sequence from Leishmania infantum. Next, we used the models to predict the contribution to a specific enzyme action of 30 peptides found in the PMF of the new protein. We implemented the present model in a server at portal Bio-AIMS (http://miaja.tic.udc.es/Bio-AIMS/EnzClassPred.php). This free on-line tool is based on PHP/HTML/Python and MARCH-INSIDE routines. This combined strategy may be used to identify and predict peptides of prokaryote and eukaryote parasites and their hosts as well as other superior organisms, which may be of interest in drug development or target identification.